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Identifying relevant positions in proteins by
Critical Variable Selection†

Silvia Grigolon,a Silvio Franzb and Matteo Marsili*c

Evolution in its course has found a variety of solutions to the same optimisation problem. The advent of

high-throughput genomic sequencing has made available extensive data from which, in principle, one

can infer the underlying structure on which biological functions rely. In this paper, we present a new

method aimed at the extraction of sites encoding structural and functional properties from a set of

protein primary sequences, namely a multiple sequence alignment. The method, called critical variable

selection, is based on the idea that subsets of relevant sites correspond to subsequences that occur with

a particularly broad frequency distribution in the dataset. By applying this algorithm to in silico

sequences, to the response regulator receiver and to the voltage sensor domain of ion channels, we

show that this procedure recovers not only the information encoded in single site statistics and pairwise

correlations but also captures dependencies going beyond pairwise correlations. The method proposed

here is complementary to statistical coupling analysis, in that the most relevant sites predicted by the

two methods differ markedly. We find robust and consistent results for datasets as small as few hundred

sequences that reveal a hidden hierarchy of sites that are consistent with the present knowledge

on biologically relevant sites and evolutionary dynamics. This suggests that critical variable selection

is capable of identifying a core of sites encoding functional and structural information in a multiple

sequence alignment.

1 Introduction

The structure and function that proteins perform inside cells is
encoded in their amino acid sequence.1 Yet sequences are subject
to biological evolution, hence the same protein or protein domain
may correspond to remarkably different sequences for organisms
that are far apart in the evolutionary tree. What constrains
evolution is precisely the requirement that the structure and
biological function be conserved.2–4 The sequence of a given
protein in different organisms can be regarded as a collection
of ‘‘solutions’’ that evolution has found to the same optimisation
problem. This observation lies at the basis of methods for inferring
the way in which the structure and functions are encoded in the
sequences of amino acids across different species.5 The first
step consists in compiling a database of sequences for a given
protein (domain) across species, called Multiple Sequence

Alignment (MSA).‡ Secondly, decoding the statistical traces
that constrained evolution leaves in the MSA allows one to
reverse engineering those positions that play a relevant role.
Thus, the frequency of mutations on single sites reveals those
positions along the sequence that are ‘‘protected’’ from mutations,
either because they are associated with important biological
functions or because they are vital for the stability of the tertiary
structure. Furthermore, correlations in the mutation of pairs
of sites carry information that can be reverse engineered to
reveal contacts in the 3D structure.5–12 Coevolution on larger
subsets of sites can be spotted by an extension of principal
component analysis, called Statistical Coupling Analysis (SCA)13,
that aims at identifying regions that are associated with func-
tional domains.8,13

Yet, in all these examples, inference techniques are limited
by and rooted in statistics that do not go beyond pairwise
correlations. Indeed, available data barely allow one to estimate
pairwise correlations, not to speak of higher order statistics.
Yet, there is no reason why evolution should use only pairwise
correlations to encode biological functions in amino acid sequences.
As a matter of fact, selection operates on the whole sequence.
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In this paper, we propose a new statistical non-parametric
method going beyond pairwise correlations for the analysis of
MSAs of a given protein (domain) family. The method, that we
call critical variable selection (CVS), is based on the conclusions
of ref. 14 that sampling of relevant degrees of freedom of a
complex system generates datasets with broad distribution of
frequencies.§ This conclusion is further refined in ref. 15
within a Bayesian model selection approach. This paper is
the first systematic attempt to exploit these ideas for identifying
the subset of relevant positions in a biological dataset. Unlike
other methods, CVS aims at distinguishing relevant from
irrelevant variables, purely on information theoretic grounds,
without assuming an a priori criterion of relevance. The aim
of our method is to unveil first of all whether there is a well-
defined hierarchy in a given set of variables and, as a consequence,
to characterise it. Here, relevance becomes a sample specific
concept, depending on the way the sample has been assembled.
As an example, if no hierarchy is present among the variables,
we would not expect CVS to identify a distinction between
relevant and irrelevant. In this sense, our method differs from
methods such as Direct Coupling Analysis (DCA)7 aimed at
identifying specific features (e.g., contacts between amino
acids), that call for models (with pairwise interactions) in which
those features are related to sufficient statistics. The downside
of our approach is that, while it is easy to validate methods
that target a specific goal for hundreds of protein families (e.g.,
by comparing DCA predictions with measured inter-residues
distances), the validation of our method requires in-depth
analysis of the protein family, because what is relevant in one
family needs not be relevant in another. Therefore, our analysis
will focus on two specific families, the Response Regulator
Receiver (RR, PFAM ID PF00072) and the voltage sensor domain
of the ion channels (VSD, PFAM ID PF00520), though it has
been performed on several other families. The sequences in
these two families have nearly the same length, but the size of
the database differs by an order of magnitude. This allows us to
probe CVS as the depth of the dataset varies, which is an
important dimension.

The paper is structured as follows. After a general introduction
into the method’s formulation and the related algorithm, we
show the outcome of CVS when applied to an in silico sequence,
a paradigmatic example to understand what kind of results
such method affords. We then proceed with the study of real
biological sequences, showing that CVS can consistently identify
the existence of an underlying ranking in relevance among sites
on actual samples. These preliminary sections are then followed
by more in depth analyses, showing the ability of CVS to unveil
information going beyond pairwise correlations and the robustness
of the method with respect to sampling and evolutionary biases.
We then compare our results with the predictions of state-of-the-art
methods, such as single-site conservation, Statistical Coupling

Analysis (SCA)13 and Direct Coupling Analysis (DCA).5–7 Our whole
analysis shows that, in the cases studied, CVS identifies a core of
interdependent positions that are denser and tighter than those
identified by SCA. Finally, we discuss the biological relevance of the
sites identified by CVS in the response regulator receivers and the
voltage sensor domain of the ion channels, in relation to site
conservation, functional sites and solvent accessible surface scores.

2 Critical variable selection
2.1 Theory

Let us consider multiple sequence alignment of homologous
proteins composed of M sequences of length L, -

sa = (aa1,. . .,aaL),
where a = 1,. . .,M labels the sequence and aa

i is the ith amino
acid of the ath sequence.¶ Each sequence -

s = (a1,. . .,aL) can be
thought of as a ‘‘solution’’ of how the same biological function
is achieved in the specific environment where that particular
sequence has evolved. Following ref. 14, we think of this as an
optimisation problem of an unknown function that also
depends on unobserved variables. Ref. 14 suggests that the
frequency with which a given sub-sequence occurs provides
information on the function being optimised. Highly conserved
sites are expected to be functionally relevant, whereas sites with
high variability are unlikely to be relevant. While the former
correspond to a peaked frequency distribution, where few sub-
sequences occur very often, a subset of highly variables sites
yield a flat distribution of frequencies with many sub-sequences
occurring a few times. So, for a given sub-set of sites, the variability
in the frequency distribution is a proxy of the variability on
those sites of the function being optimised. Therefore, the most
informative sub-sequences are those for which the frequency
distribution has the broader variation. This suggests looking
for subsets of variables such that the frequency with which the
corresponding subsequences occur has a larger variability in the
MSA. This idea is best illustrated with a specific example,
referring interested readers to ref. 14 and 15 for a more detailed
theoretical discussion.

Let the MSA in Fig. 1(a) be a compilation of sequences across
the evolutionary tree for protein domains that perform the
same biological function. Notice that each sequence -

sa is
unique, which reflects the fact that the MSA should sample
as uniformly as possible the evolutionary process. Let us
assume that, of the L = 12 positions, n = 6 are relevant for the
function of interest and the remaining ones are irrelevant.
Fig. 1(b and c) report two subsets Ib = {2, 3, 9, 10, 11, 12} and
Ic = {2, 3, 4, 9, 11, 12} of positions. For each I D {1, 2,. . ., L} we
split the sequence -

s = (�s I,
�
sI) in the subsequence �sI = {ai: i A I}

over the (putatively) relevant sites and in the subsequence �sI of
the remaining sites. Let

kI ðsÞ ¼
XM

a¼1
ds;sa

I

§ Critical, besides referring in general to an inquisitive attitude, refers to the fact
that broad frequency distributions, in particular power law distributions, have
been associated with critical phenomena in statistical physics. In this respect,
ref. 14 argues that samples probing relevant variables ‘‘look critical’’.

¶ The values that aai can take correspond to the different amino acids. Including
gaps and ambiguous amino acids, aa

i can take up to 21 values in the examples
studied in this paper.
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be the frequency number of times with which different sub-
sequences �sI occur in the sample. As Fig. 1 shows, different
choices of I lead to different distributions of frequencies, that
in general differ from the flat frequency distribution k(-s) = 1
corresponding to the entire sequence -s (black histogram in
Fig. 1(e)). The key observation in ref. 14 is that a broader
distribution of frequency (the one corresponding to Ic here)
will be more informative of the function being optimised,
because it allows us to distinguish more states in terms of
their ‘‘functionality’’. A quantitative measure of relevance is
then given by the entropy of the frequency distribution

H KI½ � ¼ �
X

k

kmI ðkÞ
M

log
kmI ðkÞ
M

(1)

where

mI ðkÞ ¼
X

s

dk;kI ðsÞ (2)

is the number of subsequences�sI that occur k times in the MSA.
H[KI] is a proxy for the (log of the) number of states that the
subset I allows one to resolve in frequency. Notice that H[KI] is
different from the entropy of the sequence �sI

H sI½ � ¼ �
X

s

kI ðsÞ
M

log
kI ðsÞ
M
¼ �

X

k

kmI ðkÞ
M

log
k

M
: (3)

While H[�sI] measures resolution, H[KI] measures relevance.
Ref. 15, to which we refer, gives further compelling arguments
for this conclusion on the basis of a Bayesian model selection
framework, showing that H[K] correlates with the number of
parameters that can be estimated on the basis of the data. In this
respect, finding the subset I that has maximal H[KI] is tantamount
to finding those variables that are described by the richest model.

Going back to our example, Fig. 1(d) shows the values of
H[�s ] and H[K] for the frequency distributions (a)–(c) in the
figure (we will suppress the index I if that creates no ambiguity

in what follows). The solid line provides an upper boundary of
the relation between H[�s] and H[K].14 Notice that the inclusion
of totally conserved sites, such as {9, 11, 12} does not affect the
value of either H[�s] and H[K], whereas inclusion of position 4,
that covaries with 2 and 3, engenders a smaller decrease in H[K]
with respect to position 10.

In general, we shall posit that the relevance of a sub-set of
positions I is quantified by H[KI]. The aim is thus to find the
sub-set I of not necessarily contiguous positions that maximises
H[KI]. As in the example mentioned above, we shall look for
maxima over the sub-set I of n = |I| positions:

In
� ¼ arg max

I : Ij j¼n
H KI½ �: (4)

The prediction of relevant sites based on the maximisation of
H[K] will be called Critical Variable Selection (CVS) in what
follows. CVS aims at finding sub-sets of sites with a high degree
of interdependency, i.e. with correlations extending to the whole
dataset. Such large scale correlations are usually associated
with power law frequency distributions. Indeed, ref. 14 shows
that frequency distributions that maximise H[KI] at a given
resolution H[�sI] = %H, typically exhibit a power law frequency
distribution mI(k) p k�m�1. We note in passing, that the
distribution that maximises H[K] differs from widely studied
sampling distributions, such as the Ewens formula.16 The algorithm
that searches for solutions of this problem is described below.
Before then, it is worth remarking on a few important points.

First, relevance is a relative concept. Here it is relative to the
criterium with which the sequences of the MSA have been
selected. The quality of the results depends ultimately on the
quality of the data and on the algorithms for the multiple
sequence alignment that is used. This means that one should
not expect a structure to be unveiled from data if it is not
present a priori in the data. We shall not discuss issues related
to MSA algorithms and rely on MSA curated and compiled by
others8,17 that we regard as benchmarks.

Fig. 1 (a)–(c) Example of three samples obtained from the same one when considering different positions, highlighting the corresponding different
states, �s. Counts k and their multiplicities mk are shown as well below the three panels. (d) Relevance H[K] as a function of the resolution, H[ s-], for the
three samples represented in (a)–(c) below the red line depicting the Poissonian case. (e) Distributions of the counts, K s-, for the different states �s
observed in the three samples in (a)–(c).
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At odds with other methods,6,13 CVS does not rely on an
explicit definition of correlation between sites. Indeed, it is based on
statistics (the frequency) that goes beyond pairwise correlation and
it uncovers information that goes beyond pairwise correlations.

Furthermore, this method assumes as the only parameter,
the number n of positions that sets the resolution in the
optimisation problem. Changing n allows us to see how the
set of relevant sites expands. If the MSA contains a hidden
hierarchy of relevant sites, we expect that varying n is equivalent
to ‘‘zooming’’ in and out of the subset of relevant sites, thereby
revealing the hierarchy. We also expect this hierarchy to be corrupted
by noise, when n becomes too large. So the parameter n will be used
for a mere aid in the search for a hierarchy of relevant sites.

2.2 The algorithm

Following our previous considerations, in this section we want
to propose an operative way of identifying the subsets of n
positions, I*(n), maximising the relevance function H[K]. In
order to implement eqn (4), we employ a simple greedy gradient
ascent algorithm: starting from a random choice of the subset I
of n positions, we iterate the following steps:

(1) Construct a new tentative subset I0 by picking one
position i at random in the subset I and exchange it randomly
with another position i0 that is not in I;

(2) compute H [KI0] and H [KI];
(3) if H [KI0] Z H [KI], accept the move to the new position in

the subset, i.e., I - I0, otherwise leave I unchanged.
The algorithm stops when H [KI] does not change for a

sufficiently large number of (attempted) moves.8 Typically, for
a given value of the subsequence length n, the algorithm does
not produce a single maximum but rather a population of local
maxima with similar values of H [K], calling for the need for
appropriately sampling the different possible solutions. In
order to get a consistent statistics and fully explore such
maxima profiles, we run the algorithm R times for each value
of n starting from randomly chosen subsets I (typically R C
100–1000). Therefore the algorithm returns a distribution of
solutions, each corresponding to a local maximum of H [KI]. In
order to assess the relevance of each position, we count the
number ci(n) of times that position i is selected in the R
solutions. We shall call this value simply the count. Upon
running the algorithm for different values of n, each position
can be assigned a total count, given by the sum of the single
counts obtained for each n, i.e., Ci ¼

P
n

ciðnÞ, which provides

information on the ‘‘relevance’’ landscape of a given protein
family.

3 The data

In order to understand the typical output of our method, we
applied it to three different datasets, namely one in silico family
of sequences and two biological MSAs. The former is made of

M = 104 sequences of length L = 64 where, for simplicity, each
amino acid aa

i , i = 1,. . .,L, a = 1,. . .,M can take only two different
values, i.e., either 0 or 1. Each sequence in the dataset is
generated in order to include sites with a different degree
of conservation and of mutual dependence. Each generated
sequence is divided into four regions:
� a core made of 5 highly correlated positions aai , i = 1,. . .,5.

In order to create non-trivial correlations that go beyond
second-order statistics, these values are assigned taking the
first five bits in the binary representation of a random number
X A [0, 1] drawn from the pdf pðxÞ ¼ 1= 2

ffiffiffi
x
p
ð Þ;

� a set of 12 subordinated sites that take values that are
noisy functions of the core variables. For i = 6,. . .,15, defining
sai = 2aai � 1,

P{sai = saksal san} = 0.95,

where 1 r k o l o n r 5 take all possible combinations,
whereas sa16 and sa17 take values sa16 = sa1sa2sa3sa4 and sa17 = sa2sa3sa4sa5 in
95% of the cases and the opposite values otherwise.
� a set of highly conserved sites made of 17 positions, where

sai takes the same value in 95% of the cases.
� a set of random sites made of the remaining 31 positions,

obtained by drawing each of them, independently at random
with P{sai = 0} = 0.5.

An example of this dataset is shown in Fig. 2(a).
The biological MSAs analysed in the following refer instead

to two different protein families, i.e., the response regulator
receiver and the voltage sensor domain of the ion channels.

Response regulator receivers (RR, PFAM ID PF00072) are
part of two-component signal transduction machineries allowing
cells to sense and respond to a high variety of environments.
These two components are usually made of a histidine kinase
(HK) aimed at sensing the surrounding environment, i.e., con-
trolling the input, whose signal is received by the response
receiver domain (RR), that in turn triggers cell physiology and
response.18 The RR consists of two other subdomains, a
N-terminal response regulator receiver domain and a variable
C-term domain aimed at DNA binding. RRs adapted to a wide
variety of signals and their evolutionary spread as well as their
availability make this system suitable for any statistical analysis,
and in particular for our technical purposes. Within the context
of our analysis, we focused on the dataset used in ref. 8, made of
N = 62 074 sequences of length L = 112.

Voltage-dependent ion channels are biomolecular machines
aimed at measuring changes in the cell transmembrane voltage
and, because of their ubiquity, are found to be as well connected
to many heritable diseases.19 Structurally, these channels are
made of four identical subunits, the voltage sensors, each of
them divided in turn into six segments (S1–S6). Hereby, we
are going to focus on the first four segments building up the
so-called Voltage-Sensor Domain (VSD), (S1–S4), found to undergo
conformational changes during voltage sensing. Our dataset is
made of M = 6652 sequences of length L = 114, already curated
in ref. 17. Note that the size of this dataset is much lower than
that of the response regulator receiver, although the length of

8 For the examples studied in this paper, 20L steps were typically found to be
enough for these conditions to be met.
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the sequences is similar. This sample can be then informative
for testing the ability of our method to extract relevant informa-
tion even in the strong undersampling regime.

4 Results and discussion
4.1 Typical behaviour of the algorithm

In this section we illustrate the behaviour of the CVS algorithm,
by applying it to synthetic and biological MSA.

4.1.1 In silico sequences. Let us now focus on the typical
behaviour and the outcomes of this algorithm when run on the
in silico sequence dataset built ad hoc to understand the typical
output of critical variable selection. Fig. 2(a) shows a sample of
the dataset. As described before, besides highly conserved sites,
the synthetic MSA also contains sites with non-trivial correlation,
going beyond second order statistics. We run the CVS algorithm
100 times for n = 5, 10, 15, 20, 25 and 30. Fig. 2(b) shows the
values of H [�s] and H [K] obtained in each run, for each value of
the sub-sequence length n. With increasing n, CVS returns
subsets of sites with increasingly higher resolution H [�s ]. At
the same time, H[K] exhibits a non-monotonic behaviour as it
first increases from n = 5 to n = 10 and then decreases. Close to
the maximum, the points corresponding to different runs are
scattered over a large region, suggesting that CVS prediction is
the most noisy. Indeed, the optimal value of n does not
correspond to the maximum of H[K] because n is too small to
adequately capture the statistical dependences in the MSA.
Much insight is provided by looking at how the samples of

optimal sub-sets of positions evolve as n varies. Fig. 2(c) shows
the counts ci(n) for each position, for n = 10, 20 and 30. CVS first
identifies highly conserved sites, together with those core sites
that are most conserved. Next, core sites and the subordinated
sites are selected when n increases. Notice that the separation
between relevant and irrelevant sites becomes sharper and
sharper as n increases: while the counts of relevant sites increase
with n, those of random sites decrease as n increases. This fact
implies that sites that are found relevant by CVS at a given n
remain relevant when n increases. This is a strong indication that
CVS is uncovering a hidden hierarchy of relevant positions. This
hierarchy is revealed by the ranking of positions in terms of total
counts Ci. The top ranked sites turn out to be the highly conserved
ones, followed by the core sites and the functional sites. In this
case, the noisy part is very poorly ranked.

Fig. 2(d) contrasts these results with what one obtains by
maximising the resolution H [�s ] instead. This procedure is expected
to select highly variable sites. Indeed, we observe the opposite
scenario, where counts ci (n) increase with n for the random sites
and decrease with n for conserved and functional sites.

In summary, as n increases, CVS reveals the hierarchy of
conservation and dependence that is hidden in the MSA. In
order to reveal this structure it is important to run CVS for
increasing values of n, at least as long as the separation
between relevant and irrelevant sites remains sharp.

4.1.2 Biological sequences: sample size, reshuffling and
reweighing. While in the study of in silico MSA the ground
truth of the generating algorithm is available for the validation
of results, for real biological sequences one has to resort to

Fig. 2 (a) Example of a typical sample of the in silico sequences used to test critical variable selection. The different parts constituting each sequence are
highlighted as described in the text. (b) Relevance, H[K], as a function of the resolution, H[�s], for the sites maximising the relevance varying the
subsequence length n. The results for Poissonian-distributed multiplicities mk are shown as well.14 (c) Single site counts for different subsequence lengths, ci(n),
obtained by maximising the relevance, H[K]. The results obtained here are highly different than those shown in (d) as the most frequent selected positions are
indeed the ones belonging to the core and the conserved sites. (d) Single site counts for different subsequence lengths, ci(n), obtained by maximising the
resolution, H[�s]. As described in the text, such a quantity tends to select by defining those positions showing maximal variability across the dataset.
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information provided by different approaches, such as annotations
of known functional sites or structural properties.

Before doing that, it is worth discussing the performance
of CVS with respect to the following important aspects of the
MSA: (i) sample size M, (ii) evolutionary bias and (iii) the nature
of correlations.

We illustrate these aspects for the MSA of the RR domain.
The analysis presented here can be considered as a preliminary
study that can be applied to any MSA in order to assess the
statistical robustness of the output of CVS.

The emergence of a hierarchy of relevant sites can be spotted
by ranking sites according to their total count Ci and plotting
the counts ci(n) as a function of their rank, for different values
of n, as shown in Fig. 3(a). As a quantitative measure of the
sharpness of the separation between relevant and irrelevant
sites, we calculate dispersion, which is defined as

Dispersion ¼ 1

L

X

i

4pi 1� pið Þ (5)

where pi ¼
ci

R
is the probability of site i to be selected by CVS,

estimated as the fraction of times position i is selected in the R
independent runs. A small value of the dispersion implies that
all sites are either selected in most runs (pi C 1) or rarely
selected (pi C 0). As a benchmark, in the random case we
expect counts to be ci C n/L so that when CVS is purely
dominated by noise the dispersion is given by E4(n/L)(1 � n/L).

We use this measure to test the robustness of CVS with
respect to the sample size M. Starting from the original dataset
for RR with poorly gapped sequences (M0 = 47 349 and the

number of gaps for each sequence is less than 4%) we iteratively
reduce M by a factor of two, by randomly selecting a subset of
half of the sequences each time. Fig. 3(b) shows the behaviour of
the dispersion, for n = 40, as a function of the sample size M. For
M E 100 this approaches the random limit E0.92, whereas for
M 4 600 a well defined structure emerges, which becomes very
robust for M 4 2000.

A second useful measure is the overlap

Overlap ¼ 1

L

X

i

p0i p
1
i þ 1� p0i

� �
1� p1i
� �� �

; (6)

between the outputs p0
i and p1

i of CVS for two different datasets.
This has the simple interpretation as the probability, averaged
over sites, that CVS predicts the same relevance for site i in the
two datasets. In Fig. 3(b) p0

i refers to CVS for the full dataset
whereas p1

i refers to the reduced dataset with M sequences. In
the random case, we expect an overlap E0.54, which is the
value we observe for M C 100. For larger values of M we see that
the overlap converges to values close to one for M 4 2000. In
summary, for M 4 2000 we observe a well defined structure of
relevant sites, and this structure is the same up to M = 47 349.

A second aspect that requires particular attention is the bias
in the datasets which comes from the fact that sequences
belonging to better studied organisms typically occur with
enhanced frequencies. In order to partially correct for this bias,
we limit our analysis to MSAs of sequences that differ in more
than d positions.** Fig. 3(c) shows the dispersion for different
realisations of the dataset as a function of the length of the
subsequence, n, whereas Fig. 3(d) shows a density plot of the

Fig. 3 (a) Critical variable selection outcome for the response regulator receiver dataset: single-site counts, ci(n) as a function of their rank ri with respect
to single-site total counts Ci, for n = 10, 20, 30 and 40 (R = 100). Different colours refer to different subsequences’ lengths as shown in the side legend.
(b) Overlap and dispersion of the CVS outcome on datasets built up taking into account M sequences of the actual one (legend is shown as the inset).
(c) Dispersion between CVS outcome on different realisations of the dataset and the randomly picked sites as a function of the subsequence length n.
Here the different realisations correspond to the actual dataset collapsed by using a similarity threshold equal to d amino acids (the legend is shown as
the inset). (d) Heat maps showing the single-site counts, ci(n), as a function of the subsequence length n = 10, 15,. . .,50 (x-axis) and the position along the
sequence (y-axis) for four different realisations of the dataset, i.e., the actual one, the one where sequences are collapsed by a similarity threshold d = 10
amino acids, the reshuffled dataset constraining single-site frequencies and the reshuffled dataset constraining pairwise correlations.
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counts ci(n) as a function of the position i and of n, for the cases
d = 0 and d = 10 (first two panels). The separation between
relevant and irrelevant sites predicted by CVS turns out to be
sharper for d = 5, 10 and 15 than in the original dataset (smaller
dispersion). This confirms that biases in the sampling of
the evolutionary process indeed mask statistical dependences.
For larger values of d, important traces of the evolutionary
dynamics are lost, as suggested by the fact that the dispersion
for large n converges to the random limit (e.g. for d = 30 and
n Z 40). This analysis suggests that d = 10 is a meaningful
threshold for the similarity of sequences.

Finally, in order to gauge the nature of the statistical depen-
dencies between positions, we compare the predictions of
CVS in the original dataset to those obtained from randomly
reshuffled MSAs.

First, in order to understand how much single site conservation
affects the results of CVS, we produced a random MSA where, at
each position, the amino acids were reshuffled across sequences.
Secondly, in order to test the relevance of pairwise correlations,
we followed the simulated annealing procedure of ref. 20 that
allows us to produce randomised datasets that preserve pairwise
correlations.

The heat maps of the counts ci(n) in Fig. 3(d) show that on
the datasets randomised by constraining single site frequencies
(third panel) and correlations (fourth panel) CVS is able to infer
a hierarchy if n r 15 and n r 30, respectively. This translates
into the fact that for n r 15 the structure within the dataset is
mainly dominated by single site conservation and then by
pairwise correlations up to n C 30, generating predictions
which are close to random (i.e. ci(n) E Rn/L) for n 4 30. By
contrast, CVS maintains a low dispersion on the original MSA
and on the d = 10 MSA up to n = 50 and beyond, highlighting
the presence of statistical dependencies in the evolutionary
process going well beyond pairwise correlations.

Finally, it is also worth noticing that single site conservation
does not necessarily imply relevance. Site 112 in RR formally
appears to be highly conserved in the dataset because it is very
often a gap. Interestingly, while this site is picked up as relevant
in the reshuffled MSAs, its counts are negligible for n 4 20 in
the real dataset.

In summary, this analysis allows us to draw three main
conclusions on this specific MSA: (i) critical variable selection
provides a robust choice of sites over a wide range of sample
sizes; (ii) critical variable selection provides robust results and
selects non-random sites when reweighting sequences with a
similarity threshold up to d = 15 amino acids; (iii) critical
variable selection infers a signal in the dataset going beyond
pure single-site conservation or pairwise correlations.

This analysis can be performed on any MSA corresponding
to a given protein domain family, and it provides a preliminary

test on whether CVS extracts a robust and non-trivial information
from the MSA. The next step is to analyse the biological relevance
of the results. But before doing that, we will compare and combine
CVS to other methods for the analysis of MSAs.

4.2 Comparison with different statistical methods: statistical
coupling analysis and direct coupling analysis

To better understand the behaviour of CVS, we compare its
predictions to those of well-established statistical techniques
aimed at identifying relevant sites and sites’ relationships in
proteins: Statistical Coupling Analysis (SCA)13 and Direct Coupling
Analysis (DCA).7

Let us start with the comparison with SCA, referring the
interested reader to ref. 13 or to the ESI† for a detailed description.
In brief, SCA is based on comparing the pairwise correlation
matrix with the one built from a randomly reshuffled MSA with
the same single amino acid frequencies at each position. Focusing
on those principal components that correspond to eigenvalues
that stand out of the distribution of the eigenvalues of the
randomised matrix, one can define sectors corresponding to
(putative) functional regions (see the ESI†). By applying SCA to
RR we identified two relevant principal components. The projections
of these components along the sequence allow us to represent each
amino acid position in a two dimensional plane. The distance of
each point from the origin can be taken then as a measure of
relevance of the corresponding site, according to SCA.

Fig. 4(a) shows the overlap between the lists of the n most
relevant sites according to CVS and SCA. For n r 30 we find
that the overlap is smaller than what one would expect from
random lists, this meaning that CVS and SCA are sensitive to
different pieces of statistical information. This is not surprising:
SCA is tailored to identify the most relevant drivers of variability
in a dataset, and highly conserved sites which, as we saw for our
in silico sequences, are effectively selected by CVS, do not appear
on top of the list of relevant sites of SCA. This fact emerges more
evidently by the analysis of the single site conservation as a
function of the rank of the sites, according to the two methods
(see Fig. 4(b)). The top sites selected by CVS have indeed much

Fig. 4 (a) Overlap between the top n sites obtained by SCA and CVS
(q(SCA,CVS)) normalised to the random value (qrand = (n/L)2 + (1 � n/L)2) as
a function of the top n sites. For small n, this ratio is equal to zero. It
increases afterwards, going beyond the random value for n C 30 and it
tends to qrand for n - L (dashed grey line). In our comparisons, we took the
value of n less than half the sequence (n C 50) for which the overlap is
maximal (red line). However, one can notice another maximum to be at
n = 68. (b) Site entropy as a function of the rank according to CVS (squares)
and SCA (circles).

** These reduced MSAs are obtained by picking sequentially at random the
sequences of the original MSA and by including them in the new MSA if their
minimal distance to the sequences already included is more than d. We checked
that the outcomes are robust, in the sense that they do not depend on the specific
realisation of this reweighing process.
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lower entropy than the corresponding ones for SCA. SCA and
CVS are thus qualitatively very different methods. We can
further visualise the difference between the two methods by
depicting the 30 top sites identified by CVS and SCA on the
protein tertiary structure. We analysed one structure (PDB ID
1NXW21) whose results are shown in Fig. 5(a) and (b). Some
common domains on the a-helices and b-sheets are clearly
identified by both methods (red bands). On this structure, a
particular site, the Asn-52, has been identified as an active and
phosphorylation site.22,23 Most of the sites identified by only
CVS (blue bands) lie indeed around Asn-52 (green star in
Fig. 5(a)), whereas those identified only by SCA (purple bands)
are much more scattered. In particular, the central b-sheet is
singled out by CVS but not by SCA.

When one compares the lists for a larger number n of top
sites, the overlap sharply increases. For n = 50 sites, the overlap
between the two lists becomes maximal (B78%) as compared
to what one would obtain if sites were randomly chosen
(B45%).†† Still, the sites identified by CVS happen to be in
closer spatial proximity on the three dimensional structure,
with respect to those in the SCA list. In order to make this
statement more precise, we pictured the two outcomes in a
network structure. Each site among the top 50 identified by the
two methods defines a node in such a network. The links
between two sites are established by their proximity on the

3D structure (PDB ID 1NXW) with a cutoff of 10 Å. The networks
for CVS and SCA are represented in Fig. 5(c) and (d). Visual
inspection reveals that CVS sites are more densely connected
both in terms of the number of links and of the size of the
largest connected component, and less fragmented, meaning
that CVS sites interact more than those selected by SCA. We
also notice that, for SCA, sectors do not seem to be related to a
spatial pattern in the network (Fig. 5(b)). Summarising, we can
conclude that CVS identifies a core of close sites in the protein,
localised around the active site Asn-52.

We also applied SCA to the MSA of the voltage sensor
domain. The results are comparable to those previously obtained
for the RR. The overlap between the top n sites of SCA and CVS is
smaller than the random threshold for n o 35, and it increases
thereafter, showing a maximum for n = 60 sites, for which the
overlap is about 80%.

A different way to visualise the difference between the two
methods is to complement our analysis with Direct Coupling
Analysis (DCA). DCA is a method aimed at identifying a network
of interactions between positions along a protein domain, that
are inferred from the traces left by the evolutionary process on
the pairwise correlation matrix. In recent years many efforts
have been spent in refining this observation into a quantitative
bioinformatic tool.6–12 Given the MSA of a certain protein
family, DCA usually produces an F-score Fi,j for each pair of
positions i, j = 1,. . .,L with Fi,i = 0. In particular, if two positions
are relevant for preserving the tertiary structure, by establishing
a physical contact, one expects residues on these sites to
co-evolve, resulting in a large value of Fi,j. DCA is indeed a
powerful tool for predicting contacts in protein domains.

Here we use DCA to generate a network of interactions
between positions, with the goal of deriving an independent
assessment of the relevance of the sites selected by CVS and
SCA, respectively. We stick to a standard implementation
method of DCA – the so called naı̈ve mean field direct coupling
analysis (DCA) based on the so-called Plefka expansion24 of
statistical physics that has been shown to capture most of the
direct contacts in 3D protein structures7. We refer to the ESI†
for a concise discussion of the steps leading to the calculation
of Fi,j as applied to our dataset.

The m contacts with the largest value of Fi,j define a network
among the n top sites of CVS and SCA. A fraction of the m
selected links will connect two of the n top sites of a given list,
so the density of links and the fragmentation of the resulting
networks provides insights into the nature of the co-evolutionary
process taking place on the selected sites. Fig. 6(a) and (b)
display the links of the m = 60 top contacts that connects two of
the n = 50 most relevant sites according to CVS (a) and SCA (b)
sites, respectively. Interestingly, the putative contacts singled
out for CVS turn out to correspond to closer sites with respect to
those identified for SCA. In general, the sites selected by CVS
appear to be more densely connected than those identified by
SCA. Indeed, by building up a network using as nodes the top n
sites selected by respectively CVS and SCA and as links the top m
DCA contacts, one can measure the number of actual contacts,
KCVS and KSCA, and the size of the largest connected component

Fig. 5 (a and b) Top 30 sites (gapped position excluded) obtained by CVS
(a) and SCA (b) visualised on the 3D structure of the response regulator
receiver (PDB 1NXW). Common sites are highlighted in red, whereas sites
singled out only by CVS (SCA) are marked in blue (purple). The active and
phosphorylation site (52 on 1NXW) is marked in green in (a) and selected by
CVS among the top 30 sites. (c and d) Network representation of the CVS
top 50 sites (c) and of the SCA top 50 sites (d). The size of the nodes is
rescaled respectively with the CVS counts Ci and the notion of relevance
defined for SCA (i.e., distance from the origin in the first two principal
components space). The links between sites are given by the actual
distances between the residues (cutoff 10 Å) on the 3D structure (PDB
1NXW), rescaled as well according to their own value. In (d) different
colours represent the four sectors (see ESI†).

†† Since sequence alignment procedures introduce gaps, we remove those sites
that result in gaps in the consensus sequence. The number of selected gaps was
very low though, less than 4% in both cases.
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in the two cases. This allows us to notice that that the top n sites
identified by CVS share a larger number of the m top DCA
contacts and own a larger connected component, with respect to
those identified by SCA (see Fig. 6(c and d) and figure caption),
in a wide range of values of n and m. Furthermore, the number
of links between the n top sites and the remaining L � n sites, is
smaller for CVS than for SCA (not shown). This is an additional
indication of the sharp separation between relevant and irrelevant
sites afforded by CVS.

4.3 Biological relevance

In order to further assess the relevance of sites selected by CVS,
we analysed their biological relevance comparing them to
functional sites stored in databases, the solvent accessible surface
rate25,26 and their importance in the evolutionary dynamics.

4.3.1 The response regulator receiver. We extracted func-
tional sites from the UniProtKB and NCBI-RefSeq databases22,23

and from ref. 18 and checked their rank in the hierarchies
defined by CVS and SCA. As shown in Table 1, most of the
functional sites are ranked by both methods among the top 50,
showing the ability of both methods of capturing functional
features. Remarkably CVS identifies as top 3 sites two active residues
(5, 6) and the previously mentioned active and phopshorylation
site (50). An important functional domain of this protein, the
intermolecular recognition domain, contains one site ranked as
5th by CVS (58) and its surrounding sites are successively ranked,
although captured later on. The same behaviour can be noticed
within the dimerisation interface (residues 102, 103, and 104).

Another important biological aspect to investigate concerns
the position of the relevant sites on the 3D structure. To this
aim, we analysed how the total CVS counts correlate with the
solvent accessible surface rate (SAS).25,26 The SAS provides a
measure of the accessibility of a given site in the 3D protein
structure, to small molecules such as water. Sites with large SAS

values are typically on the outer surface of the protein whereas
those with a low SAS value are buried in the interior. We
compared the distributions of the SAS of the n most relevant
sites identified by CVS and SCA with the overall distributions as
well as the z-score of the top n sites identified by the two

methods defined as z-score ¼ SASxh i � SASh i
dSAS

, where hSASxin is

the average SAS of the top n sites identified by x = CVS, SCA,
hSASi is the average SAS over all the sites and dSAS is its
standard deviation. Fig. 7(b) shows that the sites selected by
CVS have a consistent bias towards lower values of the SAS,
indicating that CVS preferably selects internal and conserved
sites, which are putatively important for the maintenance of
structural properties of the protein. The sites selected by SCA are
also preferentially interior, but the bias is considerably weaker.

Finally, as discussed in the Introduction, these sequences
all come from a common evolutionary history, being selected
as the optimal solution to carry out the same function across

Fig. 6 (a and b) Top 60 contacts amplified by DCA reduced on the sublists
of the top 50 sites highlighted on the 3D structure (PDB 1NXW) for CVS (a)
and SCA (b). (c) Density plot of the difference KCVS � KSCA between the
number of links in the subnetwork of the n top sites of CVS and SCA, as a
function of n and the number of DCA contacts m. Here KL is the number of
contacts, among the m top contacts identified by DCA, connecting sites
belonging to the list L = CVS, SCA. (d) Difference between the size of the
largest connected component of the sub-networks of the n top sites of
CVS and SCA identified by the top m DCA contacts.

Table 1 Comparison with databases for CVS and SCA results on
RR. Functional sites have been extracted from ref. 22,23 for the
B4DA37_9BACT sequence and18 referring to the structure PDB ID 2CHF.
In order to make a consistent comparison sequences have been matched
with particular attention to the gaps

Source
Our
alignment Function

Rank
SCA

Rank
CVS

22 and 23 5 Active 20 3
22 and 23 6 Active 31 2
18 47 Binding site for phosphate 83 87
18 50 Phosphorylation 36 1
22 and 23 52 Active, phosphorylation 25 31
22 and 23 55 Intermolecular recognition site 78 86
22 and 23 56 Intermolecular recognition site 18 85
22 and 23 58 Intermolecular recognition site 35 5
22 and 23 59 Intermolecular recognition site 62 84
22 and 23 60 Active, intermolecular recognition

site
59 83

18 75 Hydrogen bond 98 61
22 and 23 80 Active 44 37
18 97 Phosphorylation 1 14
22 and 23 99 Active 48 62
22 and 23 102 Active and dimerization interface 8 25
22 and 23 103 Active and dimerization interface 75 43
22 and 23 104 Active and dimerization interface 64 46

Fig. 7 (a) p-Value obtained from the Kolmogorov–Smirnov test between
the Solvent accessible surface distributions of the top n relevant sites
obtained by CVS (blue circles) and SCA (green diamonds) and the overall
one along with the corresponding z-score as defined in the text for CVS
(orange squares) and SCA (red triangles). Solvent accessible surface rates
have been computed using Naccess25,26 with PDB 1NXW as the input.
(b) Mutual information about the sequences and the annotations as defined
in the text for different ranking methods (the legend is shown as the inset).
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different organisms. We here asked then whether the sites
identified by CVS can be the carriers of the relevant evolutionary
dynamics. To assess this point, we computed the mutual
information between the subsequences identified by different
methods and the annotation that identifies the organism of
origin for each sequence, given by the mnemonic organism
identification code of UniProtKB. We compare the lists of the
top rank n sites obtained according to CVS, SCA and just simple
conservation (i.e. the n positions with the smallest site entropy)
among themselves and with a list of randomly chosen sites.
Different lists afford different levels of variation (i.e. different
subsequence entropies H[�s]), so a meaningful comparison is not
at constant n but at constant H[�s]. The fraction of this variation,
that accounts for the variation between organisms, was found
to be largest for CVS compared to both SCA and conservation,
for n A [10, 50] (see Fig. 7(b)).

This analysis lets us conclude that CVS is capable of extracting
functional sites with low SAS along with more conserved sites,
usually internal in the protein 3D structure, as well as accounting
for sequence variation across different organisms.

4.3.2 The voltage-sensor domain of the ion channels. To
further probe the validity of our results, we studied the voltage-
sensor domain of the ion channel sequences. We investigated
the biological relevance of CVS relevant sites, i.e., functionality
and solvent accessible surface rates. By running our algorithm
R = 100 times for each subsequence length (n = 5, 10, 15,. . .,60),
one is able to build a full count statistics. On the full dataset
of N = 6652 sequences, we found a dispersion smaller than
10%. In order to test the stability, we run it also on a subset of

N = 666 sequences for n = 40 we found a larger overlap of 76%
with the counts obtained for the full dataset.

As shown in Fig. 8(d), by ranking the counts, CVS also in
this case clearly distinguishes relevant from irrelevant sites
affording a sharp division between these two sets. Fig. 8(e)
shows that, besides highly conserved sites, CVS distinguishes
between sites whose variability is evolutionarily related to those
that can be regarded as noise. By visualising the top ranked
sites on the 3D protein structure as well as comparing these
results with the available functional knowledge, among these
top sites, a first group of 15 positions with high counts Ci can
be identified. This contains 9 sites identified in ref. 17 and 27.
Three more functionally relevant sites have counts larger than
500 belong to a larger group of the 38 most relevant sites. These
sites are represented in the 3D structure in Fig. 8(b and c).
These include N-62, N-72, R-76 and E-93 of the voltage-
dependent K+ channel KvAP which are important for channel
function.23,27 The same sites have also been identified in ref. 17
that refer to the NavAb sequence (E-49, E-59, R-63, D-80
respectively). Ref. 17 also highlights the role of I-22, F-56 and
F-71 in NavAb and it discusses the application of direct coupling
analysis of the VSD MSA, identifying several evolutionary conserved
contacts along the chain. In particular, E-49 is found to be in
contact both with N-25 and with E-96, which are far apart in the
NavAb structure. Ref. 17 argues that these two contacts are
important to confer stability both to the activated and to the
resting state of the protein domain. All these sites are found
to be relevant in the CVS analysis, as well as R-63 and S-77,
which are also found to be in contact with the NavAb structure.

Fig. 8 (a and b) Top CVS 15 (a) and 40 (b) sites represented on the VSD 3D structure (PDB ID 3RVZ) obtained by running CVS on the dataset 100 times for
each subsequence length n = 10, 20, 30 and 40 (respectively, green squares, empty red diamonds, blue circles and black stars) and then ranking sites
according to the total count, Ci. Green circles spot the functional sites already identified in ref. 23 and 27 as discussed in the main text. (c) Ranked
relevance count ci(n) for positions in VSD for different subsequence lengths, i.e. n = 10, 20, 30 and 40. (d) Site entropy as a function of total count. Green
circles represent positions identified in the literature (see text) represented on the 3D structure in (b) and (c). (e) p-Value obtained from the Kolmogorov–
Smirnov test between the solvent accessible surface distributions of the top n relevant sites obtained by CVS (blue circles) and SCA (red squares) and the
overall one. Solvent accessible surface rates have been computed using Naccess25,26 with PDB 3RVZ as the input.
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Ref. 17 also reports a false positive contact (between W-76 and
T-15). We find that while W-76 is relevant, T-15 is not (CT-15 = 145).
Finally, we find an enrichment in relevant sites in the region
corresponding to S4, which is a highly dynamical region of the
VSD, and in the S2–S3 turn (Y-63 to P-95 in KvAP) that has been
suggested to be structurally important.27

We then proceeded again by comparing the solvent accessible
surface rate distributions on the top n sites identified by CVS and
SCA respectively (see Fig. 8(e)): in this case, the outcome of the
two methods is definitely different up to the top 15 sites,
becoming more similar beyond this threshold, in agreement
with what obtained before for the RR. Again, we find a bias
towards internal sites, which is stronger for CVS than for SCA.
The example of the VSD sample shows that, in spite of the
moderate size of the MSA, CVS is able to extract stable results
and to identify functionally relevant sites.

5 Conclusions

In summary, we have proposed a new method for the identifi-
cation of a core of functionally and structurally relevant sites
in protein domains. Given a multiple sequence alignment
(MSA) for a protein family, the method is based on finding
those subsets of n positions for which the entropy H[K] of the
frequency with which different subsequences occur is maximal,
corresponding to broad frequency distributions for these sub-
sequences. Its implementation is straightforward and it does
not require any further data-processing step. By starting with
subsequences of different lengths, the method assigns to each
position a count that is used to assess the relevance of a certain
site. As the subset length includes enough positions, CVS
affords a sharp separation between relevant and irrelevant sites
for all the datasets we analysed, the relevant sites are often but
not always highly conserved positions. Besides, site relevance
turns out to increase with the subset size n, i.e., typically, if a
site i is selected as relevant in the subset of the n most relevant
positions, it will be very likely selected in the subset of n0 4 n
sites as well.

The application of our method to in silico sequences provides
a first check of the ability of CVS for discriminating relevant
information from noise and capturing dependencies going
beyond pairwise correlation in big datasets.

We have discussed the application of the method to two
protein domain families, the response regulator receivers (RR,
PFAM ID PF00072) and the voltage sensor domain of the ion
channels (VSD, PFAM ID PF00520). We first studied the response
regulator receivers (RR) and inspected the robustness of the
method against reweighing and its ability for going beyond pure
single site conservation and pairwise correlations. We then
compared our method with statistical coupling analysis (SCA)
by analysing the RR and the VSD. After assigning a measure of
relevance to both methods, we studied the overlap between the
two solutions finding out that although the top most relevant
sites are normally quite different, this overlap increases. For the
top 50 sites in the RR, the overlap between the two solutions is 78%.

An analogous result was found for the VSD. Yet, the small
differences between CVS and SCA results can be furthermore
highlighted by using Direct Coupling Analysis (DCA). CVS
identifies a core of densely connected residues and all significant
contacts predicted by DCA on the restricted lists turn out to be
close on the 3D structure for the RR. CVS is furthermore capable
of identifying biologically relevant positions: the sites extracted
from ref. 22,23,27 or identified by inference methods as direct
coupling analysis turn out to be tagged as relevant by our
method for both RR and VSD. This further corroborates the
conclusion that CVS indeed singles out subsets of relevant sites
in protein domains.

We stress, in particular, the fact that CVS is able to recover
insights from methods based on single site conservation and
pairwise correlation. Yet, the most exciting aspect of CVS lies
precisely in its ability to probe the co-evolutionary process
beyond single site conservation and pairwise correlation.
This calls, on the one hand, for the development of inference
methods going beyond pairwise interactions, and on the other
hand to applications of CVS to instances that may lead to a
more critical assessment of its potential for reverse engineering
evolutionary processes.
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