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The hormone auxin is actively transported throughout plants via protein
machineries including the dedicated transporter known as PIN. The associated
transport is ordered with nearby cells driving auxin flux in similar directions.
Here, we provide a model of both the auxin transport and of the dynamics of
cellular polarization based on flux sensing. Our main findings are: (i) spon-
taneous intracellular PIN polarization arises if PIN recycling dynamics are
sufficiently nonlinear, (ii) there is no need for an auxin concentration gradient
and (iii) ordered multi-cellular patterns of PIN polarization are favoured by
molecular noise.

1. Introduction

In plants, the initiation of different organs such as roots, leaves or flowers depends
on the cues received by cells, be they from the environment or signals produced
by the plant itself [1]. Among these signals, the hormone auxin plays a central role.
Auxin was discovered over a half century ago along with some of its macroscopic
effects on leaf and root growth [2]. It is actively transported throughout the whole
plant and it is a major driver of the plant’s architecture [3,4].

In the past decade, much has been learned about the molecular actors control-
ling auxin movement. First, cell-to-cell auxin fluxes depend on two classes of
transporters [5-7]: (i) PIN (for ‘PIN-FORMED’), that pumps auxin from inside
to outside cells [8] and (ii) AUX1 (for "AUXIN RESISTANT 1’), which pumps
auxin from outside to inside cells. Second, auxin accumulation drives cell prolifer-
ation and differentiation. Third, cells are polarized in terms of their PIN content,
that is PIN transporters localize mainly to one side of cells [9]. In addition, these
polarizations are similar from cell to cell so that auxin is systematically trans-
ported along the direction of this polarization. That ordering has major
consequences for the growth and morphogenesis of the plant because it affects
the distribution of auxin, and auxin drives both organ growth and the initiation
of new organs [10,11]. Much work has focused on how PIN polarization patterns
lead to auxin distributions, but two major questions remain unanswered concern-
ing the emergence of PIN polarization patterns: (i) how can PIN become polarized
in cells in the absence of auxin gradients? (ii) Can PIN polarization patterns be
coherent on the scale of many cells?

To address these questions, we take a modelling approach here, incorporat-
ing the main ingredients of what is currently known about (i) intercellular
auxin transport and (ii) intracellular PIN dynamics. We will first provide a deter-
ministic framework using differential equations for modelling the dynamics of
auxin and of PIN cellular polarization. Our model exhibits multiple steady
states that we characterize, the simplest ones being translation-invariant with
all cells having the same PIN polarization. We find that the emergence of polar-
ization depends on the degree of nonlinearity within the PIN recycling
dynamics. We then include molecular noise in this system coming from the sto-
chastic dynamics of PIN intracellular localization. Interestingly, for biologically
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(a) schematic of the model’s ingredients
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(b) role of transporters and PIN recycling

Figure 1. (a) Schematic two-dimensional view of the system consisting of a single layer of cells. Cubic cells of size A are in orange, apoplasts of width A are in
white. On the right: a zoom on two neighbouring cells. Grey circles stand for auxin and red arrows represent the incoming AUX1-mediated fluxes in cells, while light
blue arrows represent the out-going PIN-mediated fluxes. In these views from above, the thickness (A) of the cells is not shown. (b) Role of transmembrane
transporters. PINs pump auxin from the inside of the cell to an adjacent apoplast. AUX1 plays the reverse role, pumping auxin from apoplasts to the inside
of the cell. Dashed arrows within a cell illustrate PIN recycling. (Online version in colour.)

AUX1

realistic values of the parameters of the model, the system As cell membranes form barriers to exchanges of molecules,
is driven into a state where cells coherently polarize in taking a molecular species from one side to the other often
the same direction. In effect, the noise selects a robust self- requires dedicated transporters. In the case of auxin, the cell
organized state having homogeneous PIN polarization, membrane does allow some amount of diffusion of the hormone
corresponding to a noise-induced ordering scenario. but much less than the inside of the cell or of the apoplast where

diffusion is very rapid. We call D the associated diffusion con-
stant (measured in pm? s~ 1) within the membrane of thickness

2. 'I'h em Od el Of aUXin dyn ami ¢S an d PlN €, whereas formally we consider diffusion inside cells and
. inside apoplasts to arise infinitely quickly; as a consequence,
I’ecydlng intracellular variations of auxin concentration are negligible
Auxin transport in plants is typically organized in sheets, each and so are those within an apoplast. In addition, auxin is subject
sheet consisting of a single layer of cells. For instance, in the to active processes that transport it across the cell membrane.
case of the tips of shoots, almost all the transport arises in a Experimental evidence has shown that there are different mol-
single-cell sheet which is referred to as the L1 layer [12-16]. ecular transporters for the in-going and out-going fluxes,
For our model, we shall therefore work with one layer of transporters called, respectively, AUX1 and PIN [4,17]. These
cells. We start with a lattice of cubic cells having edges of transporters are normally localized on the cell membrane
length A separated by apoplasts—the space between two adja- where they can play their role to actively transport auxin
cent cells—of width A (cf. figure 1 which represents a view from between the inside and the outside of the cell. The out-going
above of this system). Tissues consist of closely packed cells transporters belong to a large family whose members specialize
0 A < A; typical values are A~ 1um and A ~ 20 pm. The to different organs and tissues of the plant [18]: in our context,

hormone auxin [3] is subject to different processes: we will refer to these transporters simply as PIN [19].
The dynamics of auxin concentration in each region (cell or
— production and degradation inside cells, with rate apoplast) is specified by the transmembrane flux densities of
constants 8 and p; auxin (¢paux1 and ¢ppy for the active transport and a diffusion
— passive diffusion within cells, within apoplasts, and also contribution proportional to the diffusion constant D) along
between cells and apoplasts; and with production and degradation terms. In the case of cells,

— active transport across cell membranes via transporters. we have
dA(P, 1) B— pAP, B+ AT Pavxa (P, P, 1) — pin(P, P, 1) + D(Aa(P, P, t) — Ac(P, 1)) . 2.1)
dt I3 €

In this equation, A.(P, t) is the auxin intracellular concen- Au(P, P', t) is the auxin concentration in the apoplast separating

tration of the cell centred at position P = (x, y) at time f, and nearest neighbour cells P and P'. Both concentrations will be
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specified in micromoles per litre (WM for micromolar). Further-
more, only the diffusion constant of auxin within the cell
membrane appears because it is far smaller than that within a
cell or apoplast; note that the flux is proportional to the gradi-
ent, thus the factor D/, where € is the thickness of the
membrane. ¢y (P, P, t) and ¢pp(P, P/, t) are the auxin flux
densities carried by the transporters through the corresponding
‘“face’ of cell P, i.e. the area of the membrane of cell P that faces
cell P'. By convention, the sign of each flux is positive, the one
for PIN going from the inside to the outside of the cell, and
the one for AUX1 going from outside to inside. These flux den-
sities have units of micromoles per second per surface area

AP, Pt

21 [ben(P, P, 1) = davxa (P, Py B + dpin(P', P, £) — dauxa (P, P, 1) + +D(A(P, £) + Ac(P', 1) — 2A4(P, P', 1)

(uwm?). The sum over cells P’ is restricted to the neighbours of n

P so in effect one sums over all sides of the cell P under consider-
ation that connect it to the rest of the system. The parameters 3
and p are the rates of auxin production and degradation. In
addition, the division by the factor A (the width of a cell)
appears because one goes from flux densities to effects on the
concentrations inside cells. Lastly, in our framework as depicted
in figure 1, apoplasts connect only to cells and vice versa, so
there are neither cell-to-cell nor apoplast-to-apoplast contacts.

In a similar fashion, the concentration A,(P, P/, t) of auxin
in the apoplast (of thickness A) separating cells P and P’ obeys
the following differential equation:

dt

Note that there is neither production nor degradation
of auxin in the apoplast (it is a passive medium and auxin
has a long lifetime in the absence of the active degradation
processes present in cells).

In Arabidopsis, which currently is the most studied plant,
the propensity of AUX1 influx transporters seems to be several
times higher than that of passive diffusion [20,21], thus active
processes are probably the main drivers of auxin distribution.
Furthermore, the transporters AUX1 and PIN are believed to
be completely unidirectional; the associated molecular mech-
anisms are unclear but involve first the binding of auxin and
then conformational changes. Because these processes are ana-
logous to enzymatic reactions, we model the associated auxin
fluxes via irreversible Michaelis—Menten kinetics:

NAUX]
¢AUX1(P/ P, t) = A2 e
. A.(P, P, t) 23)
1+ (Aa(P, P, 1)/ A7) + (Ac(P, t)/A™)
and
NPIN
dpin(P, P’ 1) = Wz 0
| AdP, )
14 (Aa(P, P, )/ A*) + (Ac(P, 1)/ A**)”
(2.4)

where « and y are kinetic constants analogous to catalysis rates.
The factor A? on the right-hand side of these equations corre-
sponds to the surface of the face of each cell and connects the
flux density to the (absolute) flux. At a molecular level, NADXL
(respectively, N"™) refers to the number of AUX1 (respectively,
PIN) transporters on the area of P's membrane which faces
cell P Finally, A" and A play the role of Michaelis—Menten
constants associated with saturation effects; these could have
been taken to be different in equations (2.3) and (2.4) without
any qualitative consequences for the behaviour of the model.
We are not aware of any experimental evidence that the
distribution of AUX1 transporters changes with time or that
these transporters contribute to cell polarity. Thus, we shall
assume that their numbers are constant on each face of the
cell. By contrast, PIN transporters are particularly important
for driving morphogenesis through the formation of polarity
patterns. Often they define clearly polarized fields in tissues
[12,22] where cells see their PINs predominantly localized
to one of their faces, with the specific face being the same

.2)
€

for many cells. That polarity leads to coherent auxin trans-
port, even on the scale of the whole plant, allowing in
particular auxin to be transported from shoots to roots
[23,24]. To take into account this possibility of intracellular
polarization of PIN, we introduce the four faces of a cell as
N for north, S for south, E for east and W for west. (The
two faces parallel to the sheet play no role in our simplified
model involving a single layer of cells.) Then each face of a
cell has a potentially variable number of PIN transporters:

N™, f=N,S,E W.

Furthermore, we impose the constraint Y, NI™

=0, a
cell-independent constant so each cell has the same number
of PIN transporters at all times.

The dynamics of PIN seem complex: it is known that PINs
are subject to ‘recycling’ within a cell through different mechan-
isms including transport from the membrane to the Golgi
apparatus and back to the membrane [7,25-27]. Most model-
ling takes PIN dynamics to be driven by surrounding auxin
concentrations [15,16,20,21,28,29]. For instance, it has been pos-
tulated that PIN might accumulate to the membrane facing the
neighbouring cell with the highest concentration of auxin
[15,16]. As a consequence, the presence of an auxin gradient
becomes a necessary condition for PIN polarization. Here, we
consider instead dynamics based on flux sensing where PIN
recycling rates are modulated by the amount of auxin flux trans-
ported by those same PIN transporters [30,31]. Mathematically,
we take the PIN dynamics onafacef(f= N, S, E, W) of a cell to
be specified by a Hill equation of exponent /:
dN, }’ N 3

1 1 1
=——NN—— 4N NN——

f N f N
dt AT 1 @N/) AT 1N/

(2.5)

Note that PINs are treated here as continuous variables
because in the following the number of molecules is high so
such an approximation is appropriate. Nevertheless, later we
shall treat the actual numbers via our stochastic model. The
above differential equations model the competitive recycling
of the PINs among the faces of a given cell in a flux-dependent
manner. Note that 7 is the characteristic timescale of the recy-
cling process and that the dynamics enforce the constraint of
conservation of the total number of PIN transporters inside
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each cell. Also, in equation (2.5), (j)})IN is the flux density
through face f, while ¢* is a Michaelis—Menten-like constant.

To understand the consequences of equation (2.5), consider
first the low flux limit, qb;DIN being small for all faces, so that all
denominators can be ignored. At a molecular level, each trans-
porter leaves the cell membrane at a rate proportional to 7 *;
transporters are then brought into the cytoplasm or Golgi
apparatus; finally, they get reallocated randomly to any of
the four faces. In such a low flux regime, cells will show no
PIN polarization. Second, consider instead the case where for
at least one face f, d)F]N /" is large. That face will benefit from
the recycling, recruiting more transporters from the other
faces than it loses. (¢ is just the scale at which flux sensing
in this system becomes important.) At an individual transpor-
ter level, the competitive recycling means that transporters
which are actively shuttling auxin see their rate of recycling
go down. How this happens depends on unknown molecular
details, nevertheless, the rate of detachment of a transporter
from the membrane probably depends on what fraction of
the time it is binding auxin and thus the rate of detachment
will show a dependence on d)}) N, One may attempt to model
this via a simple hyperbolic law to describe saturation effects.
To be more general, we have introduced a Hill exponent, £,
into the dynamics as given in equation (2.5). Such a functional
form is often used in the kinetic modelling of binding pro-
cesses; in that framework, h is an integer related to the
number of molecules that must co-localize, and as such, it
reflects cooperative effects. In the absence of detailed knowl-
edge of the molecular mechanisms controlling PIN recycling,
we use this phenomenological form where /1 is associated
with the nonlinearity of the PIN recycling dynamics and
we will see whether or not /1 plays an important role. In the
electronic supplementary material, we will see that our con-
clusions are insensitive to the precise form of the equations
describing PIN recycling by replacing the Hill form with a
stretched exponential.

The model is now completely specified and involves the
15 parameters A, A, €, o, B, v, p, A" AT, (f)*, 7, o, NAYX D
and h. Some of these parameters can be absorbed in scale
changes. Nevertheless, to keep the physical interpretation as
transparent as possible, we stay with the dimensional form
of the equations. Whenever possible, we assign values to
the parameters using published estimates or compilations
thereof [20,21,32]. For instance, mass-spectrometry measure-
ments [33] in very young leaves quantify the concentration
of auxin to be about 250 pg mg ™! of tissue. As the molecular
mass of auxin is about 175 Da, A, is of the order of 1 pM. As
we shall see, in the steady-state regime, 8/p = A, a relation
providing a constraint on those two parameters. Further-
more, a direct estimate of B follows from isotopic labelling
measurements [33] which show that biosynthesis replenishes
auxin within about 1 day; we have thus set 8 =1/day.
Radioactive labelling has also provided estimates for mean
displacement velocities of auxin [20,21] which we have
used to constrain the parameters a and . Unfortunately,
for other parameters (and in particular the Michaelis—
Menten constants), no direct or indirect estimations from
experimental data are available. For most such cases, we
use ballpark estimations that seem reasonable, for instance
100 PIN molecules seems too low, while 10* is perhaps on
the high side. However, for /1, which provides a phenomeno-
logical parametrization of nonlinear effects in PIN recycling,
we have little choice but to study the behaviour of the

Table 1. Parameters used in the model. M, molarity (i.e. number of moles  [Jj

per litre); |, litre.

B hpMdT
« 011s!

r 10 4s!
A 2% 10 3uM
A 0.8 uM

¢ 4 % 10~ % moles um ™25~
NAUKT 200 per face
a 1000

A 20 pm

A 1T pm

€ 10 nm

T, Tip 30 min

model as a function of its value. We use the same strategy
for D. Thus, both D and & will be used as control parameters,
allowing us to map out a two-dimensional phase diagram.
For instance, when increasing D, passive diffusion will over-
come the effects of active transport, allowing one to probe the
importance of active versus passive transport in the establish-
ment of PIN polarization. Unless specified otherwise, all
other parameter values are set as provided in table 1.

As our aim is to understand how ordered polarity pat-
terns arise in a system described by this model, it is
appropriate to define an order parameter to quantify the
ordering of flux directions or PIN intracellular localization.
We thus introduce the two-dimensional polarization vector &
for a cell at position P = (x, y); its components depend on
the face-to-face difference of the number of PINs along each
direction (say horizontal or vertical) in the following way:

o, (p) — NENP) ~ NN )

8(x,y) = 7 (2.6)
52(13) _ NII\’]IN(P) _ NEIN(P) .
o
The vector in equation (2.6) has a length |6(P)| € [0, 1]: the
two extreme values represent, respectively, the unpolarized
case, i.e. N'IN = ¢/4 for all f, and the fully polarized case,
i.e. N'IN = ¢ for one face while N'™ = 0 for all other faces.
Individual components can vary in [—1, 1] and the extreme
points give the maximum polarization in one direction or
the other.
A first step will consist of understanding the behaviour of
this system in a one-dimensional framework.

3. Analysis of the one-dimensional model
3.1. Dynamical equations

Let us replace the square lattice represented in figure 1 by a row
of cubic cells forming a one-dimensional lattice. As before,
between two adjacent cells, there is exactly one apoplast. In
this one-dimensional model, all diffusion and transport is hori-
zontal and PIN is defined only on the left (West) and right
(East) face of each cell. The dynamics of A. and A, in each
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cell are obtained from equations (2.1) and (2.2) by setting the
vertical fluxes to 0. Given the constraint of conservation of
total PIN transporters in each cell and the fact that only two
faces contribute, the dynamics of PIN numbers are completely
determined via the dynamics of NE™ and there is just one
independent equation for each cell:

leIz’lN _ LNPIN 1
N
dt DT 14 (N4
1 1
+— NPIN (3.1

o1 N/
where 1p =47/3 and NEN = ¢ — NFIN. Furthermore, polariz-
ation is no longer a vector but a scalar, given by the first
component of equation (2.6). It varies in [—1, 1]: when
6(x) ~ —1, almost all the PINs are on the left-hand side
of the cell, while when §(x) ~ 1 they are almost all on the
right-hand side.

3.2. Steady-state auxin concentrations given
translation-invariant PIN configurations

Assuming periodic boundary conditions, the row of cells
becomes a ring; this idealization is convenient for the mathemat-
ical and phase diagram analysis. Consider the steady-state
solutions of the differential equations. With periodic boundary
conditions, one expects some steady states to be translationally

1.0
0.8¢
0.6}
04r
02¢

A(UM)

0 5 10 15 20 25

D x 109 um?2s!
Figure 2. Auxin steady-state concentrations (red for apoplasts and blue for
cells) in an arbitrary PIN translation-invariant configuration as a function of
the diffusion constant D in wm?s~". The other relevant model parameters
are given in table 1. (Online version in colour.)

invariant. In that situation, all quantities are identical from cell to
cell and from apoplast to apoplast. We can then drop all time
and spatial dependence in the variables, e.g. A.(P, t) = A, for
all Pand t.

We consider here an arbitrary translation-invariant con-
figuration of PIN transporters (steady-state or not), which
implies that the auxin equations will depend only on the total
number of transporters per cell. One then has the following
equations for steady-state auxin concentrations:

04 Ac

T+ (A JA) + (AJA™) A T1+ (A JA) + (AJA™)

y A (3.2)

2D 2a A
_ _ AC = Aa _ AC <P ATAUX1 a
0= B~ pAc+( )+ N
2D 2a A
— 22 (A — Ay) — =% Nawa d
0 /\e( ¢ ) N2 1+ (Aa/A%) + (A JA™)

These two equations determine A, and A,. One can
first solve for A. by noting that in apoplasts there is no
source or degradation of auxin, thus in the steady state the
total flux (transport and diffusion counted algebraically)
through an apoplast vanishes and so the same holds for
cells. Therefore, within cells auxin degradation must com-
pensate exactly auxin production, leading to B — pA.=0.
This result, namely A. = B/p, is independent of all other par-
ameters and in particular of the PIN polarization and of D as
illustrated in figure 2. Furthermore, with A. determined in
this way, the two equations become equivalent and can be
solved for A,.

Experimental evidence [20,21] suggests that active trans-
port dominates passive (diffusive) transport in Arabidopsis.
Thus the biologically relevant regime probably corresponds
to D small. In the low-diffusion limit (D — 0), the last
equation shows that A, goes to a limiting value that is strictly
positive. (A zoom of figure 2 would also show this is the
case.) Solving this equation using the values of the par-
ameters in table 1, one finds that the concentration of auxin
in cells is much greater than that in apoplasts because
2NAUXlg > g, ie. auxin molecules are more easily trans-
ported by AUX1 than by PIN (cf. the left limit in figure 2).
One may also consider what happens when diffusion is
important; clearly as D — oo, the transporters become irrele-
vant and the equations immediately show that A. and A,
become equal. The overall behaviour is displayed in figure 2.

T+ (AJA) + (AJA™)

3.3. Translation-invariant dynamics of PIN in the
quasi-equilibrium limit for auxin

Microscopic molecular events associated with auxin transport
(be they active or passive) arise on very short timescales,
whereas PIN recycling requires major cellular machinery
and so arises on much longer timescales. Let us therefore
take the quasi-equilibrium limit where auxin concentra-
tions take on their steady-state values A. and A,. Consider
now the dynamical equation for §, the PIN polarization. As
it involves a single variable, it can always be written as gra-
dient descent relaxational dynamics, i.e. there exists a
function F(8) such that

do_1d7(0) -

dt T1D d5

F(8) plays the role of an effective potential. F(8) is minus
the integral of a known function of §; this integral can be
obtained in closed form in terms of hypergeometric functions
(see the electronic supplementary material).

The extrema of F correspond to steady states for the PIN
dynamics, i.e. dé/dt =0. Maxima are unstable and minima
are stable. Thus it is of interest to map out the form of F as a
function of the parameter values. Take for instance h = 2.
Starting with a large value for D, use of Mathematica shows
that F has a single global minimum, corresponding to the
unpolarized steady state, §=0. Then as D is lowered (the
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Figure 3. Effective potential as a function of the polarization & for D > D,
(purple) and D << D. (blue) rescaled with o’ h=2, other parameter
values are given in table 1. (Online version in colour.)

Mathematica code of the electronic supplementary material
provides the user with a knob to change D), F takes on a
double-well shape, symmetric about the zero polarization
abscissa where the curvature is now negative. At the same
time, two new local minima appear at +68". Thus as D is
lowered, the unpolarized state becomes unstable while two
new stable steady states of polarization + 5 appear; this situation
isillustrated in figure 3. If we had used instead & = 0.5, we would
have found no regime in D where F has the double-well
structure: there, the only steady state is the unpolarized one.
Within this framework, it is possible to determine a criti-
cal point D,, i.e. a threshold value of the diffusion constant,
below which spontaneous symmetry breaking sets in. The
value of D, is obtained from the following condition (see
also the electronic supplementary material):
2
%—6]2: ls—o = 0. (3.4)

In particular, for h =2, this leads to a critical value D, ~
9.4 x 1077 wm*s™". This overall framework provides a
convenient intuitive picture for PIN dynamics.

3.4. Spontaneous symmetry breaking and phase
diagram for translation-invariant steady states

The previous formalism is complicated because of the form of
F. However, if one is only interested in the steady states and
one does not care about relaxational dynamics, the steady-
state equation to solve is relatively simple (cf. equation (3.1)
where the left-hand side must be set to 0). We assume as
before that NE™ is translation-invariant but also that it is sub-
ject to PIN recycling. As A. and A, in steady states have been
previously calculated, all quantities in equation (3.1) are
known except for NEIN; it is enough then to solve the associ-
ated nonlinear equation (we have used Mathematica for this
purpose). At given h that is not too small, we find a transition
from polarized to unpolarized states as D crosses the threshold
D, (see figure 4a which illustrates the case /1 = 2). The position
of the threshold depends on h. However, if 1 is too small, the
transition point disappears, and there are no longer any polar-
ized steady states. To illustrate the situation, consider fixing
D to a small value, say D = 1077 p,m2 s ! and then solve for
NEIN as a function of the Hill exponent 4. For I less than a criti-
cal threshold h.~1.09, there is a unique solution and it
corresponds to the unpolarized state, NE™ = NEIN = /2. For
h > h., two new steady states appear which are polarized.
These two states are related by the left—right symmetry, so
there is a spontaneous symmetry breaking transition at /.

(figure 5). As h— oo, these states tend towards full polarization,
6= 1. To represent simultaneously the behaviour as a func-
tion of the diffusion constant D and of the Hill exponent £,
figure 6a provides the overall phase diagram via a heat map.
Note that when £ is too low or D is too high, the only steady
state is the unpolarized one.

The origin of this spontaneous symmetry breaking is the
change of stability of the unpolarized state. To quantitatively
understand that phenomenon, set N°'™N = ¢-/2 + §/2 and then
linearize equation (3.1) in 8. Defining F= yA.o/[2(1 + A,/
A"+ AJATA%PT (this is independent of polarization but
varies with D because of its dependence on A,), one has
HEN /"= (1 + 8)/0)F and ¢} /¢*= (1 — §)/0)F. Then the
linearization in & leads to

ds

1— (h— 1P
T =2 ] 5 (3.5)

(1 +Fry

Instability arises if and only if (#—1)F" > 1. Note that the
case of Michaelis—-Menten-type dynamics (h=1) therefore
does not lead to PIN polarization. To have spontaneous polar-
ization inside cells, the nonlinearity must be strong enough.
The mathematical condition is h > h. = 1 4+ F ", where h. is
the critical Hill exponent where the instability sets in. This
demonstrates the essential role of the nonlinearity parame-
trized here by h. Of course other forms of nonlinearity can be
expected to lead to similar conclusions. In particular, we
have found that the same qualitative behaviour arises when
using stretched exponentials rather than Hill functions (see
the electronic supplementary material). We thus conclude
that, in general, the spontaneous polarization of PIN is
driven by the strength of the nonlinearity parametrizing PIN
recycling dynamics.

One may also investigate the stability of the polarized
steady state. First, within the space of translation-invariant
configurations, a linear stability analysis using Mathematica
shows that the polarized state is always linearly stable. This
is exactly what the adiabatic approximation predicts
(cf. figure 3). Second, one can ask whether our translation-
invariant steady states are global attractors when they are line-
arly stable. We have addressed this heuristically by simulating
the dynamical equations starting from random initial con-
ditions. When & < h (or D > D, if one considers h as fixed),
it seems that the unpolarized state is the only steady state
and that all initial conditions converge to it. When h >k,
the system always seems to go to a steady state: we have
never observed any oscillatory or chaotic behaviour.
Sometimes the steady states are the previously found trans-
lation-invariant polarized states but sometimes they are not,
and contain cells with opposite signs for the PIN polarization.
This situation is much like what happens when quenching the
Ising model where there is a proliferation of such disordered
states. In the electronic supplementary material, we charac-
terize some of these non-translation-invariant steady states.
The main conclusion to draw from the arguments gathered
there is that as one approaches D. the number of steady
states diminishes. Furthermore, one expects that this effect is
accompanied by a reduction in both stability and size of
basin of attraction of steady states having defects, leading to
an increase in the coherence length (or domain sizes where a
domain is a block of cells having the same sign of polarization)
as one approaches D.. Such properties naturally lead one
to ask whether noise might enhance the coherence of
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Figure 4. (a,b) Absolute value of the (translation-invariant) PIN polarization as a function of the diffusion constant Din umz s i steady states, respectively, for the one-
and the two-dimensional models. Red line: analytical result obtained using Mathematica. Green circles: results of simulating the dynamics of the model containing,
respectively, 20 cells on a ring and 20 x 20 cells on a lattice until a steady state was reached; a fourth-order Runge — Kutta algorithm [34] was used and starting con-
figurations were randomized but had positive local PIN polarizations. (c—f) PIN polarization at a defect (green and blue) and in the absence of a defect (red) fora ring of 20
cells as a function of D for the one-dimensional case (¢,e) and a lattice of 20 x 20 cells for the two-dimensional case (d,f ). Drawings (below and insets): initial orientation
of PIN polarizations; the green and blue arrows represent the defects. (g,h) Absolute value of the mean PIN polarization per site, averaged over time, as a function of the
diffusion constant for the stochastic model for three different ring/lattice sizes (in (g), Neis = 20 green diamonds, Neeys = 10 blue squares, while in (h) Neeys = 5 blue
circles, Neeys = 10 green diamonds) and for the deterministic model (red line). Simulations were performed using cells on a ring/lattice. D is slightly lower when using
stochastic dynamics. In all the plots, h = 2 while other parameter values are given in table 1. In (g), 7= 1 s. (Online version in colour.)

polarization patterns, driving the emergence of order from
disorder [35].

3.5. Properties of the stochastic model

As the number of PIN transporter molecules in our system is
modest, noise in the associated dynamics may be important.
Thus in this section, we reconsider the system by using a sto-
chastic framework where each individual PIN transporter
can move from one face to another according to probabilistic
laws. The parameters of those laws are known via the fluxes
in the deterministic model: these fluxes give the mean
number of such PIN recycling events per unit time. To study

the stochastic model, we simulate these random events
from which we can extract the average properties arising in
the presence of such molecular noise. (See the electronic
supplementary material for implementation details.)

The stochastic dynamics are ergodic, so given enough time
the system will thermalize, there being a unique ‘thermo-
dynamic equilibrium state’. Although in principle, this state
depends on the value of 7, if auxin concentrations are close
to their steady-state values which is the case here, 71 just intro-
duces a timescale and has no effect on the equilibrium state. We
use simulations to study the equilibrium, with a particular
focus on the behaviour of PIN polarization. Observables
must be averaged over time. Just as in other thermodynamical
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Figure 5. Bifurcation diagram for translation-invariant states in the one-
dimensional model. & is the PIN polarization. The unpolarized state is
stable for h << h. ~ 1.09 (orange). Beyond that threshold, two symmetric
polarized states appear. These are stable (in red), whereas the unpolarized
state becomes unstable (in blue). Here, D = 10"" um?s~" while other
parameter values are given in table 1. (Online version in colour.)

systems having spontaneous symmetry breaking, care then has
to be used when extracting the order parameter. We thus
measure the mean PIN polarization defined by first averaging
dover all cells to obtain (8), then taking the absolute value, [{(5)|,
and then averaging over simulation time: [(5)|.

In figure 4g, we show the mean polarization thus defined as
a function of D for systems having 10 and 20 cells. At low D, the
analysis of the model in the absence of noise suggested that the
system will not polarize coherently because the typical noiseless
steady state had random polarizations (cf. §3.4). Nevertheless,
here we see that, in the presence of noise, the system seems to
have a global polarization, in agreement with the order from
disorder scenario [35]. If one refers to the special translation-
invariant steady state in the absence of noise, it seems at low
D that the presence of noise leads to almost exactly the same
value of the order parameter, so noise can be thought of as
‘selecting’ that particular ordered state. As D grows, polariz-
ation intensity decreases and noise effects are amplified. As
might have been expected, polarization is lost earlier in the
presence of noise than in its absence.

Figure 4g could be interpreted as suggesting that the equi-
librium state in the stochastic model has a real transition
between a polarized phase and an unpolarized one. However,
one has to bear in mind that for a system containing a large
enough numbers of cells the equilibrium state will in fact con-
tain multiple domains of polarization, some being oriented in
one direction and others in the opposite direction. This is inevi-
table in any one-dimensional system having short-range
interactions [36,37], and so no true long-range order arises in
this system if the number of cells is allowed to be arbitrarily
large. To add credence to this claim, note that the polarization
curves are slightly different for the different lattice sizes, the
polarization decreasing as the number of cells increases. It is
thus plausible that in the limit of an infinite number of cells,
the polarization vanishes for all D.

4. Analysis of the two-dimensional model

4.1. Steady-state auxin concentrations given
translation-invariant PIN configurations

In two dimensions, we again begin by considering auxin
steady-state concentrations in the presence of translation-
invariant PIN configurations. Auxin concentrations are then

also translation-invariant, but compared to the one-
dimensional case, vertical and horizontal apoplasts need
not have the same concentrations of auxin. We denote these
concentrations as AY and AY.

In all steady states, the total rate of auxin production must
be compensated by the total rate of auxin degradation. This
immediately gives A. = B/p just like in the one-dimensional
model. In addition, A!Y is determined by the equation

AW
0 =2D(A. — AV) — 2aNAUX1 a
(A = A2 = 2N AW &) 1 (A A7)
A
o < , 3.6
YT AW/A) 1 (A A (36)

where " = NEIN + NIIN. AN is determined by the analogous
equation in which the index W is replaced by N and
ol = NIIN + NFIN. Thus, in contrast to the one-dimensional
case, the concentration of auxin in apoplasts depends not
only on model parameters like D but also on PIN polariz-
ation. Unpolarized configurations lead to ¢ = o = /2
and then AY = AY, in which case the equations take the
same form as in one dimension.

The lowest and highest possible values of AV arise when
o"¥'=0 and 0" =0, respectively. These lower and upper
bounds are represented in figure 7 along with the value of
Ac as a function of D. Clearly, auxin concentrations are
hardly affected at all by PIN polarization. Furthermore,
both qualitatively and quantitatively, the situation is very
close to that in the one-dimensional model.

4.2. Translation-invariant dynamics of PIN in the quasi-
equilibrium limit for auxin

In the one-dimensional model, we saw that translation-invar-
iant dynamics of PIN polarization followed from a potential
energy function when auxin was assumed to be in the
quasi-equilibrium state. In two dimensions, there are four
dynamical variables which satisfy the conservation law
NE™ + NN + NYN + Ng'™ = 0. Each N/™ obeys a first-
order differential equation; the question now is whether
these follow from a potential energy function F:
ANPN

dt NI 67

The answer is negative: no potential exists because the
velocity field has a non-zero curl. Nevertheless, if in the initial
conditions, the PINs obey the symmetry NJ™ = NI™N (or the
symmetry NFIN = NTIN) then this symmetry is preserved by
the dynamics. (Note that the symmetry is associated with
reflecting the system of cells about an axis.) Then one sees
that the differential equations for the two other PIN numbers
are nearly identical to those in the one-dimensional model.
For instance, if NiN = NIV, the equation for NE™N is that of
the one-dimensional model if one substitutes o by ¢". The
difficulty is that " itself follows from solving the differential
equations and thus can depend on time. Although one does
not have a true potential energy function, the important
property is that the instantaneous rate of change of NTIN
can be mapped to its value in the one-dimensional model
via the aforementioned substitution. We thus expect to have
the same kind of spontaneous symmetry breaking where
the unpolarized steady state goes from being stable at low
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h to being unstable at high /1, with an associated appearance
of stable polarized steady states.

4.3. Spontaneous symmetry breaking and phase
diagram for translation-invariant steady states

To determine the translation-invariant steady states, one must
solve six simultaneous nonlinear equations, two of which
give Al and A} in terms of the N{'™, the other four being

associated with PIN recycling. We tackle this task using
Mathematica.

Qualitatively, one obtains the same behaviour as in the
one-dimensional model. As displayed in figure 4b, there is
a continuous transition between a polarized state at low D
and an unpolarized state at large D.

Equivalently, for low values of & there is only one steady
state and it is unpolarized (cf. figure 8). Increasing &, there is
spontaneous symmetry breaking at a first threshold where
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the unpolarized state becomes unstable and a new polarized
steady state appears. Cells in that polarized state have a large
number of PIN transporters on one face and no polarization
in the perpendicular direction. Because of this last property,
the system effectively behaves as a stack of rows which do
not exchange auxin, each row being like the polarized one-
dimensional system. Surprisingly, a second spontaneous
symmetry breaking transition arises at a very slightly larger
value of h and even a third still beyond that. The associated
translation-invariant steady states behave as illustrated in
figure 8. However, these spurious states are always linearly
unstable and so will not be considered further.

To get a global view of the behaviour as a function of both
D and h, we present via a heat map the complete phase dia-
gram in figure 6b where the norm of the polarization vector is
given only for the (unique) stable (and translation-invariant)
steady state.

4.4, Properties of the stochastic model

The method of introducing molecular noise into the dynamical
equations is oblivious to the dimensionality of the model. Thus
each dynamical equation can be rendered stochastic for the
two-dimensional model without any further thought by fol-
lowing the procedure outlined above for the one-dimensional
case. We can then use this to study the thermodynamic equili-
brium state. Once equilibration was observed, we measured
the average polarization vector (8), the average (-) being
taken over the whole lattice at one specific time. We also
define 6p as the angle of that averaged vector, tan(6p) =
8,/ 8;. In the low D regime, the cells stay highly polarized
and are oriented close to a common direction along one of
the axes of the lattice. This situation illustrated in figure 9
where we also show the distribution of 6p over the time of
the simulation. On the contrary, for ‘high’ D, PINs tend to dis-
tribute quite evenly among the faces of a cell and this leads to a
relatively flat histogram for the values of 6p (figure 9).

1

10~ ¢ pum” s~ . (Online

However, this histogram is slightly misleading because the
polarization vectors (&) have a very small magnitude and in
effect each cell is essentially depolarized.

Just as in the one-dimensional case, one may ask whether
there is a true transition from a globally polarized state to an
unpolarized state when D goes from low to high values.
A naive way to do so would be to average () over the length
of the simulation. However, because the dynamics is ergodic,
this average should vanish in the limit of a long run. The
same difficulty arises in all systems that undergo spontaneous
symmetry breaking. It is necessary to first take the norm of (8),
then average over time and finally check for trends with the
size of the lattice. In figure 4/, we show this time average,
(8], as a function of D for lattices of different sizes. For com-
parison, we also show the corresponding curve in the
absence of noise.

The behaviour displayed is compatible with a true order-
ing transition as might be expected from the analogy with the
behaviour of the Ising model. Such a behaviour is also in
agreement with the noise-induced ordering scenario [38]
and related phenomena [35].

5. Conclusion

Although auxin transport in meristematic tissues (roots, shoots
and cambium) has been actively studied in the past decade
while associated molecular actors have been identified, the
questions of how intracellular PIN polarization arises and
how globally coherent polarization patterns emerge have not
been sufficiently addressed. Our work is based on modelling
both auxin transport across cells and PIN recycling within indi-
vidual cells. The dynamics we use for PIN recycling is
modulated by an auxin flux-sensing system. Such recycling
allows PIN transporters to move within a cell from one face
to another. The PINs can accumulate on one face if there is a
feedback which allows such a polarized state to maintain
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itself. Given this framework and estimates for a number of
model parameter values, we mapped out a phase diagram
giving the behaviour of the system in terms of specific par-
ameters. The one-dimensional model, describing a row of
cells in a plant tissue, allowed for large-scale PIN polarization
in the absence of any auxin gradient. Furthermore that toy limit
was analytically tractable and correctly described all the fea-
tures arising in the two-dimensional model. The detailed
analysis revealed a particularly essential ingredient: PIN polar-
ization requires a sufficient level of nonlinearity in the PIN
recycling rates. In terms of our mathematical equations, this
nonlinearity was parametrized by the Hill exponent I appear-
ing in equation (2.5), which is associated with cooperativity in
the field of enzyme kinetics. If Michaelis—Menten dynamics is
used (corresponding to i =1 and thus no cooperativity), the
system always goes to the unpolarized state. On the other
hand, when / rises above a threshold /., the homogeneous
unpolarized state becomes unstable and polarized PIN pat-
terns spontaneously emerge. We showed that the same
qualitative behaviour occurs when using nonlinearities based
on stretched exponentials rather than Hill equations (cf. elec-
tronic supplementary material). That result shows that our
model’s predictions are robust to changes in assumptions
about the dynamical equations.

In addition, by studying the feedback between auxin con-
centrations and PIN recycling, we showed that nearby cells
tend to polarize in the same direction. Another particularly
striking result found was that the molecular noise in the
PIN recycling dynamics seems to impose long-range order
on the PIN polarization patterns. This ‘noise-induced order-
ing’ could be the mechanism driving the ordering found

for instance in the cambium, ordering that can span tens of
metres in the case of trees.

Given that these conclusions follow from our hypothesis
that PIN recycling is based on flux sensing, experimental
investigations should be performed to provide stringent com-
parisons with the predictions of our model. The most direct
test of our hypothesis would be to determine whether cells
depolarize when the auxin flux carried by PINs is sup-
pressed. In Arabidopsis, the polarization of PIN can be
observed thanks to fluorescent PIN transporters so what
needs to be done is to apply a perturbation affecting auxin
flux. One simple way to achieve this is to inject auxin into
an apoplast; the associated increase in auxin concentration
will likely inhibit PIN transport into that apoplast. If such
an injection cannot be performed without mechanically dis-
rupting the cell membranes, a less invasive manipulation
could be obtained if the AUX1 transporters can be modified
so that they may be locally photo-inhibited. Exposure to a
laser beam would then prevent the auxin from leaving a
given apoplast, followed by a rapid increase in auxin concen-
tration just as in the simpler experiment previously proposed.
In both cases, our model predicts that the PIN recycling
dynamics would lead to depolarization of the cell polarized
towards the apoplast, while the neighbouring cell, polarized
away from the apoplast, would hardly be affected.
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