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The hormone auxin is actively transported throughout plants via protein

machineries including the dedicated transporter known as PIN. The associated

transport is ordered with nearby cells driving auxin flux in similar directions.

Here, we provide a model of both the auxin transport and of the dynamics of

cellular polarization based on flux sensing. Our main findings are: (i) spon-

taneous intracellular PIN polarization arises if PIN recycling dynamics are

sufficiently nonlinear, (ii) there is no need for an auxin concentration gradient

and (iii) ordered multi-cellular patterns of PIN polarization are favoured by

molecular noise.
1. Introduction
In plants, the initiation of different organs such as roots, leaves or flowers depends

on the cues received by cells, be they from the environment or signals produced

by the plant itself [1]. Among these signals, the hormone auxin plays a central role.

Auxin was discovered over a half century ago along with some of its macroscopic

effects on leaf and root growth [2]. It is actively transported throughout the whole

plant and it is a major driver of the plant’s architecture [3,4].

In the past decade, much has been learned about the molecular actors control-

ling auxin movement. First, cell-to-cell auxin fluxes depend on two classes of

transporters [5–7]: (i) PIN (for ‘PIN-FORMED’), that pumps auxin from inside

to outside cells [8] and (ii) AUX1 (for ‘AUXIN RESISTANT 1’), which pumps

auxin from outside to inside cells. Second, auxin accumulation drives cell prolifer-

ation and differentiation. Third, cells are polarized in terms of their PIN content,

that is PIN transporters localize mainly to one side of cells [9]. In addition, these

polarizations are similar from cell to cell so that auxin is systematically trans-

ported along the direction of this polarization. That ordering has major

consequences for the growth and morphogenesis of the plant because it affects

the distribution of auxin, and auxin drives both organ growth and the initiation

of new organs [10,11]. Much work has focused on how PIN polarization patterns

lead to auxin distributions, but two major questions remain unanswered concern-

ing the emergence of PIN polarization patterns: (i) how can PIN become polarized

in cells in the absence of auxin gradients? (ii) Can PIN polarization patterns be

coherent on the scale of many cells?

To address these questions, we take a modelling approach here, incorporat-

ing the main ingredients of what is currently known about (i) intercellular

auxin transport and (ii) intracellular PIN dynamics. We will first provide a deter-

ministic framework using differential equations for modelling the dynamics of

auxin and of PIN cellular polarization. Our model exhibits multiple steady

states that we characterize, the simplest ones being translation-invariant with

all cells having the same PIN polarization. We find that the emergence of polar-

ization depends on the degree of nonlinearity within the PIN recycling

dynamics. We then include molecular noise in this system coming from the sto-

chastic dynamics of PIN intracellular localization. Interestingly, for biologically
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schematic of the model’s ingredients
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Figure 1. (a) Schematic two-dimensional view of the system consisting of a single layer of cells. Cubic cells of size L are in orange, apoplasts of width l are in
white. On the right: a zoom on two neighbouring cells. Grey circles stand for auxin and red arrows represent the incoming AUX1-mediated fluxes in cells, while light
blue arrows represent the out-going PIN-mediated fluxes. In these views from above, the thickness (L) of the cells is not shown. (b) Role of transmembrane
transporters. PINs pump auxin from the inside of the cell to an adjacent apoplast. AUX1 plays the reverse role, pumping auxin from apoplasts to the inside
of the cell. Dashed arrows within a cell illustrate PIN recycling. (Online version in colour.)
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realistic values of the parameters of the model, the system

is driven into a state where cells coherently polarize in

the same direction. In effect, the noise selects a robust self-

organized state having homogeneous PIN polarization,

corresponding to a noise-induced ordering scenario.
2. The model of auxin dynamics and PIN
recycling

Auxin transport in plants is typically organized in sheets, each

sheet consisting of a single layer of cells. For instance, in the

case of the tips of shoots, almost all the transport arises in a

single-cell sheet which is referred to as the L1 layer [12–16].

For our model, we shall therefore work with one layer of

cells. We start with a lattice of cubic cells having edges of

length L separated by apoplasts—the space between two adja-

cent cells—of width l (cf. figure 1 which represents a view from

above of this system). Tissues consist of closely packed cells

so l� L; typical values are l � 1 mm and L � 20 mm. The

hormone auxin [3] is subject to different processes:

— production and degradation inside cells, with rate

constants b and r;

— passive diffusion within cells, within apoplasts, and also

between cells and apoplasts; and

— active transport across cell membranes via transporters.
As cell membranes form barriers to exchanges of molecules,

taking a molecular species from one side to the other often

requires dedicated transporters. In the case of auxin, the cell

membrane does allow some amount of diffusion of the hormone

but much less than the inside of the cell or of the apoplast where

diffusion is very rapid. We call D the associated diffusion con-

stant (measured in mm2 s21) within the membrane of thickness

e, whereas formally we consider diffusion inside cells and

inside apoplasts to arise infinitely quickly; as a consequence,

intracellular variations of auxin concentration are negligible

and so are those within an apoplast. In addition, auxin is subject

to active processes that transport it across the cell membrane.

Experimental evidence has shown that there are different mol-

ecular transporters for the in-going and out-going fluxes,

transporters called, respectively, AUX1 and PIN [4,17]. These

transporters are normally localized on the cell membrane

where they can play their role to actively transport auxin

between the inside and the outside of the cell. The out-going

transporters belong to a large family whose members specialize

to different organs and tissues of the plant [18]: in our context,

we will refer to these transporters simply as PIN [19].

The dynamics of auxin concentration in each region (cell or

apoplast) is specified by the transmembrane flux densities of

auxin (fAUX1 and fPIN for the active transport and a diffusion

contribution proportional to the diffusion constant D) along

with production and degradation terms. In the case of cells,

we have
dAc(P, t)
dt

¼ b� rAc(P, t)þ L�1P
P0

fAUX1(P, P0, t)� fPIN(P, P0, t)þD(Aa(P, P0, t)� Ac(P, t))
e

� �
: (2:1)
In this equation, Ac(P, t) is the auxin intracellular concen-

tration of the cell centred at position P ¼ (x, y) at time t, and
Aa(P, P0, t) is the auxin concentration in the apoplast separating

nearest neighbour cells P and P0. Both concentrations will be
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specified in micromoles per litre (mM for micromolar). Further-

more, only the diffusion constant of auxin within the cell

membrane appears because it is far smaller than that within a

cell or apoplast; note that the flux is proportional to the gradi-

ent, thus the factor D=e, where e is the thickness of the

membrane. fAUX1(P, P0, t) and fPIN(P, P0, t) are the auxin flux

densities carried by the transporters through the corresponding

‘face’ of cell P, i.e. the area of the membrane of cell P that faces

cell P0. By convention, the sign of each flux is positive, the one

for PIN going from the inside to the outside of the cell, and

the one for AUX1 going from outside to inside. These flux den-

sities have units of micromoles per second per surface area
(mm2). The sum over cells P0 is restricted to the neighbours of

P so in effect one sums over all sides of the cell P under consider-

ation that connect it to the rest of the system. The parameters b

and r are the rates of auxin production and degradation. In

addition, the division by the factor L (the width of a cell)

appears because one goes from flux densities to effects on the

concentrations inside cells. Lastly, in our framework as depicted

in figure 1, apoplasts connect only to cells and vice versa, so

there are neither cell-to-cell nor apoplast-to-apoplast contacts.

In a similar fashion, the concentration Aa(P, P0, t) of auxin

in the apoplast (of thickness l) separating cells P and P0 obeys

the following differential equation:
.S
oc.Interface
12:
dAa(P, P0, t)
dt

¼ l�1 fPIN(P, P0, t)� fAUX1(P, P0, t)þ fPIN(P0, P, t)� fAUX1(P0, P, t)þþD(Ac(P, t)þ Ac(P0, t)� 2Aa(P, P0, t))
e

� �
: (2:2)
20141223
Note that there is neither production nor degradation

of auxin in the apoplast (it is a passive medium and auxin

has a long lifetime in the absence of the active degradation

processes present in cells).

In Arabidopsis, which currently is the most studied plant,

the propensity of AUX1 influx transporters seems to be several

times higher than that of passive diffusion [20,21], thus active

processes are probably the main drivers of auxin distribution.

Furthermore, the transporters AUX1 and PIN are believed to

be completely unidirectional; the associated molecular mech-

anisms are unclear but involve first the binding of auxin and

then conformational changes. Because these processes are ana-

logous to enzymatic reactions, we model the associated auxin

fluxes via irreversible Michaelis–Menten kinetics:

fAUX1(P, P0, t) ¼ NAUX1

L2
� a

� Aa(P, P0, t)
1þ (Aa(P, P0, t)=A�)þ (Ac(P, t)=A��)

(2:3)

and

fPIN(P, P0, t) ¼ NPIN

L2
� g

� Ac(P, t)
1þ (Aa(P, P0, t)=A�)þ (Ac(P, t)=A��)

,

(2:4)

where a and g are kinetic constants analogous to catalysis rates.

The factor L2 on the right-hand side of these equations corre-

sponds to the surface of the face of each cell and connects the

flux density to the (absolute) flux. At a molecular level, NAUX1

(respectively, NPIN) refers to the number of AUX1 (respectively,

PIN) transporters on the area of P0s membrane which faces

cell P0. Finally, A* and A** play the role of Michaelis–Menten

constants associated with saturation effects; these could have

been taken to be different in equations (2.3) and (2.4) without

any qualitative consequences for the behaviour of the model.

We are not aware of any experimental evidence that the

distribution of AUX1 transporters changes with time or that

these transporters contribute to cell polarity. Thus, we shall

assume that their numbers are constant on each face of the

cell. By contrast, PIN transporters are particularly important

for driving morphogenesis through the formation of polarity

patterns. Often they define clearly polarized fields in tissues

[12,22] where cells see their PINs predominantly localized

to one of their faces, with the specific face being the same
for many cells. That polarity leads to coherent auxin trans-

port, even on the scale of the whole plant, allowing in

particular auxin to be transported from shoots to roots

[23,24]. To take into account this possibility of intracellular

polarization of PIN, we introduce the four faces of a cell as

N for north, S for south, E for east and W for west. (The

two faces parallel to the sheet play no role in our simplified

model involving a single layer of cells.) Then each face of a

cell has a potentially variable number of PIN transporters:

NPIN
f , f ¼ N, S, E, W :

Furthermore, we impose the constraint
P

f NPIN
f ; s, a

cell-independent constant so each cell has the same number

of PIN transporters at all times.

The dynamics of PIN seem complex: it is known that PINs

are subject to ‘recycling’ within a cell through different mechan-

isms including transport from the membrane to the Golgi

apparatus and back to the membrane [7,25–27]. Most model-

ling takes PIN dynamics to be driven by surrounding auxin

concentrations [15,16,20,21,28,29]. For instance, it has been pos-

tulated that PIN might accumulate to the membrane facing the

neighbouring cell with the highest concentration of auxin

[15,16]. As a consequence, the presence of an auxin gradient

becomes a necessary condition for PIN polarization. Here, we

consider instead dynamics based on flux sensing where PIN

recycling rates are modulated by the amount of auxin flux trans-

ported by those same PIN transporters [30,31]. Mathematically,

we take the PIN dynamics on a face f ( f ¼ N, S, E, W ) of a cell to

be specified by a Hill equation of exponent h:

dNPIN
f

dt
¼� 3

4t
NPIN

f
1

1þ (fPIN
f =f�)

hþ
1

4t

X
f 0

NPIN
f 0

1

1þ (fPIN
f 0 =f�)

h :

(2:5)

Note that PINs are treated here as continuous variables

because in the following the number of molecules is high so

such an approximation is appropriate. Nevertheless, later we

shall treat the actual numbers via our stochastic model. The

above differential equations model the competitive recycling

of the PINs among the faces of a given cell in a flux-dependent

manner. Note that t is the characteristic timescale of the recy-

cling process and that the dynamics enforce the constraint of

conservation of the total number of PIN transporters inside



Table 1. Parameters used in the model. M, molarity (i.e. number of moles
per litre); l, litre.

b 1 mM d21

r 1 d21

a 0.1 l s21

G 1024 l s21

A* 2 � 1023mM

A** 0.8 mM

f* 4 � 1026 moles mm22 s21

NAUX1 200 per face

s 1000

L 20 mm

l 1 mm

e 10 nm

t, t1D 30 min
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each cell. Also, in equation (2.5), fPIN
f is the flux density

through face f, while f� is a Michaelis–Menten-like constant.

To understand the consequences of equation (2.5), consider

first the low flux limit, fPIN
f being small for all faces, so that all

denominators can be ignored. At a molecular level, each trans-

porter leaves the cell membrane at a rate proportional to t21;

transporters are then brought into the cytoplasm or Golgi

apparatus; finally, they get reallocated randomly to any of

the four faces. In such a low flux regime, cells will show no

PIN polarization. Second, consider instead the case where for

at least one face f, fPIN
f =f� is large. That face will benefit from

the recycling, recruiting more transporters from the other

faces than it loses. (f* is just the scale at which flux sensing

in this system becomes important.) At an individual transpor-

ter level, the competitive recycling means that transporters

which are actively shuttling auxin see their rate of recycling

go down. How this happens depends on unknown molecular

details, nevertheless, the rate of detachment of a transporter

from the membrane probably depends on what fraction of

the time it is binding auxin and thus the rate of detachment

will show a dependence on fPIN
f . One may attempt to model

this via a simple hyperbolic law to describe saturation effects.

To be more general, we have introduced a Hill exponent, h,

into the dynamics as given in equation (2.5). Such a functional

form is often used in the kinetic modelling of binding pro-

cesses; in that framework, h is an integer related to the

number of molecules that must co-localize, and as such, it

reflects cooperative effects. In the absence of detailed knowl-

edge of the molecular mechanisms controlling PIN recycling,

we use this phenomenological form where h is associated

with the nonlinearity of the PIN recycling dynamics and

we will see whether or not h plays an important role. In the

electronic supplementary material, we will see that our con-

clusions are insensitive to the precise form of the equations

describing PIN recycling by replacing the Hill form with a

stretched exponential.

The model is now completely specified and involves the

15 parameters L, l, e, a, b, g, r, A*, A**, f*, t, s, NAUX1, D
and h. Some of these parameters can be absorbed in scale

changes. Nevertheless, to keep the physical interpretation as

transparent as possible, we stay with the dimensional form

of the equations. Whenever possible, we assign values to

the parameters using published estimates or compilations

thereof [20,21,32]. For instance, mass-spectrometry measure-

ments [33] in very young leaves quantify the concentration

of auxin to be about 250 pg mg21 of tissue. As the molecular

mass of auxin is about 175 Da, Ac is of the order of 1 mM. As

we shall see, in the steady-state regime, b/r ¼ Ac, a relation

providing a constraint on those two parameters. Further-

more, a direct estimate of b follows from isotopic labelling

measurements [33] which show that biosynthesis replenishes

auxin within about 1 day; we have thus set b ¼ 1/day.

Radioactive labelling has also provided estimates for mean

displacement velocities of auxin [20,21] which we have

used to constrain the parameters a and g. Unfortunately,

for other parameters (and in particular the Michaelis–

Menten constants), no direct or indirect estimations from

experimental data are available. For most such cases, we

use ballpark estimations that seem reasonable, for instance

100 PIN molecules seems too low, while 104 is perhaps on

the high side. However, for h, which provides a phenomeno-

logical parametrization of nonlinear effects in PIN recycling,

we have little choice but to study the behaviour of the
model as a function of its value. We use the same strategy

for D. Thus, both D and h will be used as control parameters,

allowing us to map out a two-dimensional phase diagram.

For instance, when increasing D, passive diffusion will over-

come the effects of active transport, allowing one to probe the

importance of active versus passive transport in the establish-

ment of PIN polarization. Unless specified otherwise, all

other parameter values are set as provided in table 1.

As our aim is to understand how ordered polarity pat-

terns arise in a system described by this model, it is

appropriate to define an order parameter to quantify the

ordering of flux directions or PIN intracellular localization.

We thus introduce the two-dimensional polarization vector d

for a cell at position P ¼ (x, y); its components depend on

the face-to-face difference of the number of PINs along each

direction (say horizontal or vertical) in the following way:

d(x, y) ;
d1(P) ¼ NPIN

E (P)�NPIN
W (P)

s

d2(P) ¼ NPIN
N (P)�NPIN

S (P)

s
:

8>><
>>: (2:6)

The vector in equation (2.6) has a length jd(P)j [ [0, 1]: the

two extreme values represent, respectively, the unpolarized

case, i.e. NPIN
f ¼ s=4 for all f, and the fully polarized case,

i.e. NPIN
f ¼ s for one face while NPIN

f ¼ 0 for all other faces.

Individual components can vary in [21, 1] and the extreme

points give the maximum polarization in one direction or

the other.

A first step will consist of understanding the behaviour of

this system in a one-dimensional framework.
3. Analysis of the one-dimensional model
3.1. Dynamical equations
Let us replace the square lattice represented in figure 1 by a row
of cubic cells forming a one-dimensional lattice. As before,

between two adjacent cells, there is exactly one apoplast. In

this one-dimensional model, all diffusion and transport is hori-

zontal and PIN is defined only on the left (West) and right

(East) face of each cell. The dynamics of Ac and Aa in each
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Figure 2. Auxin steady-state concentrations (red for apoplasts and blue for
cells) in an arbitrary PIN translation-invariant configuration as a function of
the diffusion constant D in mm2 s21. The other relevant model parameters
are given in table 1. (Online version in colour.)
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cell are obtained from equations (2.1) and (2.2) by setting the

vertical fluxes to 0. Given the constraint of conservation of

total PIN transporters in each cell and the fact that only two

faces contribute, the dynamics of PIN numbers are completely

determined via the dynamics of NPIN
E and there is just one

independent equation for each cell:

dNPIN
E

dt
¼ � 1

t1D
NPIN

E
1

1þ (fPIN
E =f�)

h

þ 1

t1D
NPIN

W
1

1þ (fPIN
W =f�)

h , (3:1)

where t1D ¼ 4t/3 and NPIN
W ¼ s�NPIN

E . Furthermore, polariz-

ation is no longer a vector but a scalar, given by the first

component of equation (2.6). It varies in [21, 1]: when

d(x) � 21, almost all the PINs are on the left-hand side

of the cell, while when d(x) � 1 they are almost all on the

right-hand side.

3.2. Steady-state auxin concentrations given
translation-invariant PIN configurations

Assuming periodic boundary conditions, the row of cells

becomes a ring; this idealization is convenient for the mathemat-

ical and phase diagram analysis. Consider the steady-state

solutions of the differential equations. With periodic boundary

conditions, one expects some steady states to be translationally
invariant. In that situation, all quantities are identical from cell to

cell and from apoplast to apoplast. We can then drop all time

and spatial dependence in the variables, e.g. Ac(P, t) ¼ Ac for

all P and t.
We consider here an arbitrary translation-invariant con-

figuration of PIN transporters (steady-state or not), which

implies that the auxin equations will depend only on the total

number of transporters per cell. One then has the following

equations for steady-state auxin concentrations:
0 ¼ b� rAc þ
2D
Le

(Aa � Ac)þ 2a

L3
NAUX1 Aa

1þ (Aa=A�)þ (Ac=A��)
� g

L3
s

Ac

1þ (Aa=A�)þ (Ac=A��)

0 ¼ 2D
le

(Ac � Aa)� 2a

lL2
NAUX1 Aa

1þ (Aa=A�)þ (Ac=A��)
þ g

lL2
s

Ac

1þ (Aa=A�)þ (Ac=A��)
:

8>><
>>: (3:2)
These two equations determine Ac and Aa. One can

first solve for Ac by noting that in apoplasts there is no

source or degradation of auxin, thus in the steady state the

total flux (transport and diffusion counted algebraically)

through an apoplast vanishes and so the same holds for

cells. Therefore, within cells auxin degradation must com-

pensate exactly auxin production, leading to b 2 rAc ¼ 0.

This result, namely Ac ¼ b/r, is independent of all other par-

ameters and in particular of the PIN polarization and of D as

illustrated in figure 2. Furthermore, with Ac determined in

this way, the two equations become equivalent and can be

solved for Aa.

Experimental evidence [20,21] suggests that active trans-

port dominates passive (diffusive) transport in Arabidopsis.

Thus the biologically relevant regime probably corresponds

to D small. In the low-diffusion limit (D! 0), the last

equation shows that Aa goes to a limiting value that is strictly

positive. (A zoom of figure 2 would also show this is the

case.) Solving this equation using the values of the par-

ameters in table 1, one finds that the concentration of auxin

in cells is much greater than that in apoplasts because

2NAUX1a� sg, i.e. auxin molecules are more easily trans-

ported by AUX1 than by PIN (cf. the left limit in figure 2).

One may also consider what happens when diffusion is

important; clearly as D!1, the transporters become irrele-

vant and the equations immediately show that Ac and Aa

become equal. The overall behaviour is displayed in figure 2.
3.3. Translation-invariant dynamics of PIN in the
quasi-equilibrium limit for auxin

Microscopic molecular events associated with auxin transport

(be they active or passive) arise on very short timescales,

whereas PIN recycling requires major cellular machinery

and so arises on much longer timescales. Let us therefore

take the quasi-equilibrium limit where auxin concentra-

tions take on their steady-state values Ac and Aa. Consider

now the dynamical equation for d, the PIN polarization. As

it involves a single variable, it can always be written as gra-

dient descent relaxational dynamics, i.e. there exists a

function F (d) such that

dd

dt
¼ � 1

t1D

dF (d)

dd
: (3:3)

F (d) plays the role of an effective potential. F (d) is minus

the integral of a known function of d; this integral can be

obtained in closed form in terms of hypergeometric functions

(see the electronic supplementary material).

The extrema of F correspond to steady states for the PIN

dynamics, i.e. dd/dt ¼ 0. Maxima are unstable and minima

are stable. Thus it is of interest to map out the form of F as a

function of the parameter values. Take for instance h ¼ 2.

Starting with a large value for D, use of Mathematica shows

that F has a single global minimum, corresponding to the

unpolarized steady state, d ¼ 0. Then as D is lowered (the
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Figure 3. Effective potential as a function of the polarization d for D . Dc
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Mathematica code of the electronic supplementary material

provides the user with a knob to change D), F takes on a

double-well shape, symmetric about the zero polarization

abscissa where the curvature is now negative. At the same

time, two new local minima appear at +d*. Thus as D is

lowered, the unpolarized state becomes unstable while two

new stable steadystates of polarization +d* appear; this situation

is illustrated in figure 3. If we had used instead h¼ 0.5, we would

have found no regime in D where F has the double-well

structure: there, the only steady state is the unpolarized one.

Within this framework, it is possible to determine a criti-

cal point Dc, i.e. a threshold value of the diffusion constant,

below which spontaneous symmetry breaking sets in. The

value of Dc is obtained from the following condition (see

also the electronic supplementary material):

@2F
@d2
jd¼0 ¼ 0: (3:4)

In particular, for h ¼ 2, this leads to a critical value Dc �
9.4 � 1027 mm2 s21. This overall framework provides a

convenient intuitive picture for PIN dynamics.

3.4. Spontaneous symmetry breaking and phase
diagram for translation-invariant steady states

The previous formalism is complicated because of the form of

F . However, if one is only interested in the steady states and

one does not care about relaxational dynamics, the steady-

state equation to solve is relatively simple (cf. equation (3.1)

where the left-hand side must be set to 0). We assume as

before that NPIN
E is translation-invariant but also that it is sub-

ject to PIN recycling. As Ac and Aa in steady states have been

previously calculated, all quantities in equation (3.1) are

known except for NPIN
E ; it is enough then to solve the associ-

ated nonlinear equation (we have used Mathematica for this

purpose). At given h that is not too small, we find a transition

from polarized to unpolarized states as D crosses the threshold

Dc (see figure 4a which illustrates the case h ¼ 2). The position

of the threshold depends on h. However, if h is too small, the

transition point disappears, and there are no longer any polar-

ized steady states. To illustrate the situation, consider fixing

D to a small value, say D ¼ 1027 mm2 s21, and then solve for

NPIN
E as a function of the Hill exponent h. For h less than a criti-

cal threshold hc� 1.09, there is a unique solution and it

corresponds to the unpolarized state, NPIN
E ¼ NPIN

W ¼ s=2. For

h . hc, two new steady states appear which are polarized.

These two states are related by the left–right symmetry, so

there is a spontaneous symmetry breaking transition at hc
(figure 5). As h!1, these states tend towards full polarization,

d ¼ +1. To represent simultaneously the behaviour as a func-

tion of the diffusion constant D and of the Hill exponent h,

figure 6a provides the overall phase diagram via a heat map.

Note that when h is too low or D is too high, the only steady

state is the unpolarized one.

The origin of this spontaneous symmetry breaking is the

change of stability of the unpolarized state. To quantitatively

understand that phenomenon, set NPIN
E ¼ s=2þ d=2 and then

linearize equation (3.1) in d. Defining F¼ gAcs/[2(1 þ Aa/

A* þ Ac/A**)L2f*] (this is independent of polarization but

varies with D because of its dependence on Aa), one has

fPIN
E =f�¼ ((1þ d)=s)F and fPIN

W =f�¼ ((1� d)=s)F. Then the

linearization in d leads to

t
dd

dt
¼ �2

1� (h� 1)Fh

(1þ Fh)
2

" #
d: (3:5)

Instability arises if and only if (h21)Fh . 1. Note that the

case of Michaelis–Menten-type dynamics (h ¼ 1) therefore

does not lead to PIN polarization. To have spontaneous polar-

ization inside cells, the nonlinearity must be strong enough.

The mathematical condition is h . hc ¼ 1þ F�hc , where hc is

the critical Hill exponent where the instability sets in. This

demonstrates the essential role of the nonlinearity parame-

trized here by h. Of course other forms of nonlinearity can be

expected to lead to similar conclusions. In particular, we

have found that the same qualitative behaviour arises when

using stretched exponentials rather than Hill functions (see

the electronic supplementary material). We thus conclude

that, in general, the spontaneous polarization of PIN is

driven by the strength of the nonlinearity parametrizing PIN

recycling dynamics.

One may also investigate the stability of the polarized

steady state. First, within the space of translation-invariant

configurations, a linear stability analysis using Mathematica

shows that the polarized state is always linearly stable. This

is exactly what the adiabatic approximation predicts

(cf. figure 3). Second, one can ask whether our translation-

invariant steady states are global attractors when they are line-

arly stable. We have addressed this heuristically by simulating

the dynamical equations starting from random initial con-

ditions. When h 	 hc (or D 
 Dc if one considers h as fixed),

it seems that the unpolarized state is the only steady state

and that all initial conditions converge to it. When h . hc,

the system always seems to go to a steady state: we have

never observed any oscillatory or chaotic behaviour.

Sometimes the steady states are the previously found trans-

lation-invariant polarized states but sometimes they are not,

and contain cells with opposite signs for the PIN polarization.

This situation is much like what happens when quenching the

Ising model where there is a proliferation of such disordered

states. In the electronic supplementary material, we charac-

terize some of these non-translation-invariant steady states.

The main conclusion to draw from the arguments gathered

there is that as one approaches Dc the number of steady

states diminishes. Furthermore, one expects that this effect is

accompanied by a reduction in both stability and size of

basin of attraction of steady states having defects, leading to

an increase in the coherence length (or domain sizes where a

domain is a block of cells having the same sign of polarization)

as one approaches Dc. Such properties naturally lead one

to ask whether noise might enhance the coherence of
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Figure 4. (a,b) Absolute value of the (translation-invariant) PIN polarization as a function of the diffusion constant D inmm2 s21 in steady states, respectively, for the one-
and the two-dimensional models. Red line: analytical result obtained using Mathematica. Green circles: results of simulating the dynamics of the model containing,
respectively, 20 cells on a ring and 20 � 20 cells on a lattice until a steady state was reached; a fourth-order Runge – Kutta algorithm [34] was used and starting con-
figurations were randomized but had positive local PIN polarizations. (c – f ) PIN polarization at a defect (green and blue) and in the absence of a defect (red) for a ring of 20
cells as a function of D for the one-dimensional case (c,e) and a lattice of 20 � 20 cells for the two-dimensional case (d,f ). Drawings (below and insets): initial orientation
of PIN polarizations; the green and blue arrows represent the defects. (g,h) Absolute value of the mean PIN polarization per site, averaged over time, as a function of the
diffusion constant for the stochastic model for three different ring/lattice sizes (in (g), Ncells ¼ 20 green diamonds, Ncells ¼ 10 blue squares, while in (h) Ncells ¼ 5 blue
circles, Ncells ¼ 10 green diamonds) and for the deterministic model (red line). Simulations were performed using cells on a ring/lattice. Dc is slightly lower when using
stochastic dynamics. In all the plots, h ¼ 2 while other parameter values are given in table 1. In (g), t ¼ 1 s. (Online version in colour.)
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polarization patterns, driving the emergence of order from

disorder [35].
3.5. Properties of the stochastic model
As the number of PIN transporter molecules in our system is

modest, noise in the associated dynamics may be important.

Thus in this section, we reconsider the system by using a sto-

chastic framework where each individual PIN transporter

can move from one face to another according to probabilistic

laws. The parameters of those laws are known via the fluxes

in the deterministic model: these fluxes give the mean
number of such PIN recycling events per unit time. To study
the stochastic model, we simulate these random events

from which we can extract the average properties arising in

the presence of such molecular noise. (See the electronic

supplementary material for implementation details.)

The stochastic dynamics are ergodic, so given enough time

the system will thermalize, there being a unique ‘thermo-

dynamic equilibrium state’. Although in principle, this state

depends on the value of t1D, if auxin concentrations are close

to their steady-state values which is the case here, t1D just intro-

duces a timescale and has no effect on the equilibrium state. We

use simulations to study the equilibrium, with a particular

focus on the behaviour of PIN polarization. Observables

must be averaged over time. Just as in other thermodynamical
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systems having spontaneous symmetry breaking, care then has

to be used when extracting the order parameter. We thus

measure the mean PIN polarization defined by first averaging

d over all cells to obtain kdl, then taking the absolute value, jkdlj,
and then averaging over simulation time: jkdlj.

In figure 4g, we show the mean polarization thus defined as

a function of D for systems having 10 and 20 cells. At low D, the

analysis of the model in the absence of noise suggested that the

system will not polarize coherently because the typical noiseless

steady state had random polarizations (cf. §3.4). Nevertheless,

here we see that, in the presence of noise, the system seems to

have a global polarization, in agreement with the order from

disorder scenario [35]. If one refers to the special translation-

invariant steady state in the absence of noise, it seems at low

D that the presence of noise leads to almost exactly the same

value of the order parameter, so noise can be thought of as

‘selecting’ that particular ordered state. As D grows, polariz-

ation intensity decreases and noise effects are amplified. As

might have been expected, polarization is lost earlier in the

presence of noise than in its absence.

Figure 4g could be interpreted as suggesting that the equi-

librium state in the stochastic model has a real transition

between a polarized phase and an unpolarized one. However,

one has to bear in mind that for a system containing a large

enough numbers of cells the equilibrium state will in fact con-

tain multiple domains of polarization, some being oriented in

one direction and others in the opposite direction. This is inevi-

table in any one-dimensional system having short-range

interactions [36,37], and so no true long-range order arises in

this system if the number of cells is allowed to be arbitrarily

large. To add credence to this claim, note that the polarization

curves are slightly different for the different lattice sizes, the

polarization decreasing as the number of cells increases. It is

thus plausible that in the limit of an infinite number of cells,

the polarization vanishes for all D.
4. Analysis of the two-dimensional model
4.1. Steady-state auxin concentrations given

translation-invariant PIN configurations
In two dimensions, we again begin by considering auxin

steady-state concentrations in the presence of translation-

invariant PIN configurations. Auxin concentrations are then
also translation-invariant, but compared to the one-

dimensional case, vertical and horizontal apoplasts need

not have the same concentrations of auxin. We denote these

concentrations as AN
a and AW

a .

In all steady states, the total rate of auxin production must

be compensated by the total rate of auxin degradation. This

immediately gives Ac ¼ b/r just like in the one-dimensional

model. In addition, AW
a is determined by the equation

0 ¼ 2D(Ac � AW
a )� 2aNAUX1 AW

a

1þ (AW
a =A�)þ (Ac=A��)

þ gsE Ac

1þ (AW
a =A�)þ (Ac=A��)

, (3:6)

where sW ¼ NPIN
E þNPIN

W . AN is determined by the analogous

equation in which the index W is replaced by N and

sN ¼ NPIN
N þNPIN

S . Thus, in contrast to the one-dimensional

case, the concentration of auxin in apoplasts depends not

only on model parameters like D but also on PIN polariz-

ation. Unpolarized configurations lead to sW ¼ sN ¼ s=2

and then AN
a ¼ AW

a , in which case the equations take the

same form as in one dimension.

The lowest and highest possible values of AW
a arise when

sW ¼ 0 and sW ¼ s, respectively. These lower and upper

bounds are represented in figure 7 along with the value of

Ac as a function of D. Clearly, auxin concentrations are

hardly affected at all by PIN polarization. Furthermore,

both qualitatively and quantitatively, the situation is very

close to that in the one-dimensional model.
4.2. Translation-invariant dynamics of PIN in the quasi-
equilibrium limit for auxin

In the one-dimensional model, we saw that translation-invar-

iant dynamics of PIN polarization followed from a potential

energy function when auxin was assumed to be in the

quasi-equilibrium state. In two dimensions, there are four

dynamical variables which satisfy the conservation law

NPIN
E þNPIN

W þNPIN
N þNPIN

S ¼ s. Each NPIN
f obeys a first-

order differential equation; the question now is whether

these follow from a potential energy function F :

tdNPIN
f

dt
¼ � @F

@NPIN
f

: (3:7)

The answer is negative: no potential exists because the

velocity field has a non-zero curl. Nevertheless, if in the initial

conditions, the PINs obey the symmetry NPIN
N ¼ NPIN

S (or the

symmetry NPIN
E ¼ NPIN

W ), then this symmetry is preserved by

the dynamics. (Note that the symmetry is associated with

reflecting the system of cells about an axis.) Then one sees

that the differential equations for the two other PIN numbers

are nearly identical to those in the one-dimensional model.

For instance, if NPIN
N ¼ NPIN

S , the equation for NPIN
E is that of

the one-dimensional model if one substitutes s by sW. The

difficulty is that sW itself follows from solving the differential

equations and thus can depend on time. Although one does

not have a true potential energy function, the important

property is that the instantaneous rate of change of NPIN
W

can be mapped to its value in the one-dimensional model

via the aforementioned substitution. We thus expect to have

the same kind of spontaneous symmetry breaking where

the unpolarized steady state goes from being stable at low
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h to being unstable at high h, with an associated appearance

of stable polarized steady states.

4.3. Spontaneous symmetry breaking and phase
diagram for translation-invariant steady states

To determine the translation-invariant steady states, one must

solve six simultaneous nonlinear equations, two of which

give AW
a and AN

a in terms of the NPIN
f , the other four being
associated with PIN recycling. We tackle this task using

Mathematica.

Qualitatively, one obtains the same behaviour as in the

one-dimensional model. As displayed in figure 4b, there is

a continuous transition between a polarized state at low D
and an unpolarized state at large D.

Equivalently, for low values of h there is only one steady

state and it is unpolarized (cf. figure 8). Increasing h, there is

spontaneous symmetry breaking at a first threshold where
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the unpolarized state becomes unstable and a new polarized

steady state appears. Cells in that polarized state have a large

number of PIN transporters on one face and no polarization

in the perpendicular direction. Because of this last property,

the system effectively behaves as a stack of rows which do

not exchange auxin, each row being like the polarized one-

dimensional system. Surprisingly, a second spontaneous

symmetry breaking transition arises at a very slightly larger

value of h and even a third still beyond that. The associated

translation-invariant steady states behave as illustrated in

figure 8. However, these spurious states are always linearly

unstable and so will not be considered further.

To get a global view of the behaviour as a function of both

D and h, we present via a heat map the complete phase dia-

gram in figure 6b where the norm of the polarization vector is

given only for the (unique) stable (and translation-invariant)

steady state.
4.4. Properties of the stochastic model
The method of introducing molecular noise into the dynamical

equations is oblivious to the dimensionality of the model. Thus

each dynamical equation can be rendered stochastic for the

two-dimensional model without any further thought by fol-

lowing the procedure outlined above for the one-dimensional

case. We can then use this to study the thermodynamic equili-

brium state. Once equilibration was observed, we measured

the average polarization vector kdl, the average k � l being

taken over the whole lattice at one specific time. We also

define uP as the angle of that averaged vector, tan(uP) ¼

d2/d1. In the low D regime, the cells stay highly polarized

and are oriented close to a common direction along one of

the axes of the lattice. This situation illustrated in figure 9

where we also show the distribution of uP over the time of

the simulation. On the contrary, for ‘high’ D, PINs tend to dis-

tribute quite evenly among the faces of a cell and this leads to a

relatively flat histogram for the values of uP (figure 9).
However, this histogram is slightly misleading because the

polarization vectors kdl have a very small magnitude and in

effect each cell is essentially depolarized.

Just as in the one-dimensional case, one may ask whether

there is a true transition from a globally polarized state to an

unpolarized state when D goes from low to high values.

A naive way to do so would be to average kdl over the length

of the simulation. However, because the dynamics is ergodic,

this average should vanish in the limit of a long run. The

same difficulty arises in all systems that undergo spontaneous

symmetry breaking. It is necessary to first take the norm of kdl,
then average over time and finally check for trends with the

size of the lattice. In figure 4h, we show this time average,

jkdlj, as a function of D for lattices of different sizes. For com-

parison, we also show the corresponding curve in the

absence of noise.

The behaviour displayed is compatible with a true order-

ing transition as might be expected from the analogy with the

behaviour of the Ising model. Such a behaviour is also in

agreement with the noise-induced ordering scenario [38]

and related phenomena [35].
5. Conclusion
Although auxin transport in meristematic tissues (roots, shoots

and cambium) has been actively studied in the past decade

while associated molecular actors have been identified, the

questions of how intracellular PIN polarization arises and

how globally coherent polarization patterns emerge have not

been sufficiently addressed. Our work is based on modelling

both auxin transport across cells and PIN recycling within indi-

vidual cells. The dynamics we use for PIN recycling is

modulated by an auxin flux-sensing system. Such recycling

allows PIN transporters to move within a cell from one face

to another. The PINs can accumulate on one face if there is a

feedback which allows such a polarized state to maintain
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itself. Given this framework and estimates for a number of

model parameter values, we mapped out a phase diagram

giving the behaviour of the system in terms of specific par-

ameters. The one-dimensional model, describing a row of

cells in a plant tissue, allowed for large-scale PIN polarization

in the absence of any auxin gradient. Furthermore that toy limit

was analytically tractable and correctly described all the fea-

tures arising in the two-dimensional model. The detailed

analysis revealed a particularly essential ingredient: PIN polar-

ization requires a sufficient level of nonlinearity in the PIN

recycling rates. In terms of our mathematical equations, this

nonlinearity was parametrized by the Hill exponent h appear-

ing in equation (2.5), which is associated with cooperativity in

the field of enzyme kinetics. If Michaelis–Menten dynamics is

used (corresponding to h ¼ 1 and thus no cooperativity), the

system always goes to the unpolarized state. On the other

hand, when h rises above a threshold hc, the homogeneous

unpolarized state becomes unstable and polarized PIN pat-

terns spontaneously emerge. We showed that the same

qualitative behaviour occurs when using nonlinearities based

on stretched exponentials rather than Hill equations (cf. elec-

tronic supplementary material). That result shows that our

model’s predictions are robust to changes in assumptions

about the dynamical equations.

In addition, by studying the feedback between auxin con-

centrations and PIN recycling, we showed that nearby cells

tend to polarize in the same direction. Another particularly

striking result found was that the molecular noise in the

PIN recycling dynamics seems to impose long-range order

on the PIN polarization patterns. This ‘noise-induced order-

ing’ could be the mechanism driving the ordering found
for instance in the cambium, ordering that can span tens of

metres in the case of trees.

Given that these conclusions follow from our hypothesis

that PIN recycling is based on flux sensing, experimental

investigations should be performed to provide stringent com-

parisons with the predictions of our model. The most direct

test of our hypothesis would be to determine whether cells

depolarize when the auxin flux carried by PINs is sup-

pressed. In Arabidopsis, the polarization of PIN can be

observed thanks to fluorescent PIN transporters so what

needs to be done is to apply a perturbation affecting auxin

flux. One simple way to achieve this is to inject auxin into

an apoplast; the associated increase in auxin concentration

will likely inhibit PIN transport into that apoplast. If such

an injection cannot be performed without mechanically dis-

rupting the cell membranes, a less invasive manipulation

could be obtained if the AUX1 transporters can be modified

so that they may be locally photo-inhibited. Exposure to a

laser beam would then prevent the auxin from leaving a

given apoplast, followed by a rapid increase in auxin concen-

tration just as in the simpler experiment previously proposed.

In both cases, our model predicts that the PIN recycling

dynamics would lead to depolarization of the cell polarized

towards the apoplast, while the neighbouring cell, polarized

away from the apoplast, would hardly be affected.
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